
Adaptive Parametrization of Multivariate B-splines for Image Registration

Michael Sass Hansen and
Rasmus Larsen

Technical University of Denmark
Lyngby, Denmark
msh@imm.dtu.dk

Ben Glocker and
Nassir Navab

Technische Universität München
München, Germany

Abstract

We present an adaptive parametrization scheme for dy-
namic mesh refinement in the application of parametric im-
age registration. The scheme is based on a refinement mea-
sure ensuring that the control points give an efficient rep-
resentation of the warp fields, in terms of minimizing the
registration cost function. In the current work we introduce
multivariate B-splines as a novel alternative to the widely
used tensor B-splines enabling us to make efficient use of
the derived measure.

The multivariate B-splines of order n are Cn−1 smooth
and are based on Delaunay configurations of arbitrary 2D
or 3D control point sets. Efficient algorithms for finding
the configurations are presented, and B-splines are through
their flexibility shown to feature several advantages over
the tensor B-splines. In spite of efforts to make the tensor
product B-splines more flexible, the knots are still bound
to reside on a regular grid. In contrast, by efficient non-
constrained placement of the knots, the multivariate B-
splines are shown to give a good representation of inho-
mogeneous objects in natural settings.

The wide applicability of the method is illustrated
through its application on medical data and for optical flow
estimation.

1. Introduction
Image alignment is a challenging task due the infe-

rior number of constraints compared to the number of un-
knowns. One approach to overcome this problem is to re-
duce dimensionality of the problem. Hence, parametric im-
age registration has become quite popular and has been suc-
cessfully applied to many applications. The two main ad-
vantages are (i) the reduced number of parameters which
makes the problem tractable from an optimization point of
view and (ii) often the transformation model inherently pro-
vides some smoothness properties on the warping field. In
order to be able to capture the present deformations, hierar-
chical approaches have been considered where the number

(a) Regular B-spline grid (b) Multivariate B-spline knots

Figure 1. In (b) it is seen how the multivariate B-splines can adopt
to the structure in the image.

of parameters is successively increased during the optimiza-
tion process. However, these update schemes often follow
some heuristic approaches, for instance in mesh-based mod-
els by simply reducing the spacing between control points
and thus do not incorporate any quantitative or qualitative
measurement about the state of the registration. One can
claim, that the refinement strategy has a significant influ-
ence on the solution and should be guided by some knowl-
edge obtained directly from the images and/or the optimiza-
tion process. Furthermore, one can claim that the transfor-
mation model should be flexible enough and dynamically
adjustable in order to reflect such extracted knowledge dur-
ing image alignment. Therefore, we propose a framework
for parametric image registration which allows us on one
hand to assess the quality of the current solution locally and
on the other hand we can estimate the potential improve-
ment by a local refinement of the parameter set. Since, one
could expect that such an improvement will spatially vary
over the image domain, there is a need for flexible transfor-
mation models.

B-splines are popular in numerous applications because
of achievable smoothness properties and the local support.
Tensor product B-splines were introduced for modeling free
form deformations (FFD) in the context of computer graph-
ics [13]. The method was improved by using hierarchical
B-splines [5, 16]. The same subdivision scheme was used in
medical image registration [11]. However, the tensor prod-
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uct B-splines are defined uniformly on a grid, and in the
search for a more local control of the representation detail,
the notion of an active set of knots was introduced in [12].
Still, such an simulation approach consists of locally uni-
form grids which cannot represent the imaged objects in an
appropriate way.

Cootes et al. created a minimum description length opti-
mization scheme for the placement of control points of tri-
angular piecewise affine interpolation basis functions [3].
However, the method is defined as a groupwise method, and
it relies heavily on the calculation of the inverse deforma-
tion. Recently Chandrashekara et al. proposed a parame-
terization based on a subdivision scheme, also to obtain a
limited number of parameters [10].

We instead propose to use the multivariate B-splines as
presented by Neamtu, to obtain a flexible and smooth warp
interpolation function with local support[7]. They are capa-
ble of representing fields more densely in some areas, while
keeping the number of degrees of freedoms small for an ef-
ficient optimiation.

Dahmen et al. [4] introduced the so called DMS-splines
or triangular B-splines based on the multivariate simplex
splines and auxiliary knots. Franssen et al. [6] described a
new method for efficient calculation of triangular B-splines
using an evaluation graph. Recently, Wang et al. [15] intro-
duced DMS-splines in computer vision for nonrigid regis-
tration with rigid parts that defined by manual landmarks.
The most recent multivariate B-splines were introduced by
Neamtu [7], and they rely heavily on the new concept of
Delaunay configurations [8].

The remainder of this paper is organized as follows:
first we will present the general framework for paramet-
ric image registration. Based on this, we derive our adap-
tive parametrization scheme. In Section 4 we present the
concept behind multivariate B-splines and their use in our
framework for image registration. Experimental results are
shown in Section 5 while the last Section concludes our pa-
per.

2. Parametric Image Registration
The image registration problem can be formulated as the

minimization of the functional J given by

J [I,R,ϕ] = D [I,R;ϕ] + S[ϕ] (1)

where I is an s-dimensional deformable image, R is the
target/reference image, ϕ is the mapping from R into cor-
responding points in I . In the present work we are focus-
ing on parametric image registration, which means that the
warps can formally be represented by

ϕ : RM → (f : Rs → Rs) (2)

which means that the parameters of ϕ determines what the
warp will look like. We will think ofϕ as being represented

as
ϕ =

∑
i

ciKi(x) , (3)

where Ki are the basis functions, and the vectors ci =
[ci1...cis]T are the parameters associated with the basis
function.
D[I,R;ϕ] is a similarity measure and S[ϕ] is a regular-

ization measure, and we will discuss these functionals in the
context of parametric warp representation, in the following
sections.

2.1. Similarity Measures

As a similarity measure the sum of squared distances
(SSD) is used, but this could be exchanged with any other
common similarity measures.

D[I,R;ϕ] =
∫

Ω

[I ◦ϕ(x)−R(x)]2 dx (4)

For the subsequent analysis we shall need some of the
derivatives of D[I,R;ϕ]. The Gâteaux derivative of D is
given by

dϕ,vD[I,R;ϕ] =
∫

Ω

〈f(x,ϕ),v〉Rs dx (5)

where f can be perceived as registration forces in the image,
and is given by

f(x,ϕ(x)) = (I ◦ϕ(x)−R(x)) · ∇I ◦ϕ(x) , (6)

which is also denoted as the driving force of the registration
process.

The variation v(x) is restricted to the subspace spanned
by the basis functions. The derivative with respect to a warp
parameter cij is given by

∂D
∂cij

= dϕ, ∂ϕ
∂cij

D[I,R;ϕ] =
∫

Ω

〈
f(x,ϕ),

∂ϕ

∂cij

〉
Rs

dx

2.2. Regularization

Often some prior knowledge is available about the pre-
sented image registration problem. This prior knowledge
can generally be expressed as a differential regularizer B,
and some Sobolev norm.

S[ϕ] =
∫

Ω

〈B[u],B[u]〉Rs dx , (7)

where ϕ = Id + u. This norm has a Gâteaux derivative
given by

du;vS[u] =
∫

Ω

〈A[u](x),v(x)〉Rd dx , (8)



where A = B∗B. For the present work the commonly used
elastic regularizer is chosen, which can be represented by

B[u] =
[ √

µ 0
0
√

2µ+ λ

] [
∇× u
∇ · u

]
(9)

from which A = µ∆u + (λ + µ)∇(∇ · u). We can again
form the derivative with respect to the parameter

∂S[u]
∂cij

=
∫

Ω

〈
A[u],

∂u

∂cij

〉
dx (10)

3. Adaptive Parametrization
After minimizing (7) the following equation must hold

for the reached optimum.

∂J [I,R;ϕ]
∂cij

=
∂D[I,R;ϕ]

∂cij
+
∂S[u]
∂cij

= 0 . (11)

This is the parameterized version of the variational optimum

f(x) +A[u] = 0 , x ∈ Ω (12)

Now observe that (11) can be interpreted as an averaged
projection of the variational optimum (12)

∂D
∂cij

+
∂S[u]
∂cij

=
∫

Ω

〈
f(x, ϕ) +A[u],

∂u

∂cij

〉
dx = 0

where the projection is performed on to the support of the
warp parameter. This projection, derived from (3), is given
by

∂u

∂cij
(x) = ejKi(x), x ∈ Ω ,

where ej denotes the unit vector along the jth dimension
and Ki is the basis function associated with the parameter
cij . In popular terms, each of our parameters is designed
to achieve the variational optimum (12) in average only,
and for this reason it seems obvious to pose the question;
how well is the variational optimum achieved? We pro-
pose to measure this fitness of a basis function in terms of
the improvement we could achieve by replacing the basis
function with several more local basis functions. We will
assume that the basis function can be refined into several
similar basis functions, only with a smaller support, and
the response of these local basis functions can be mod-
elled by applying a Gaussian filter on the force residues〈
f(x, ϕ) +A[u], ∂u

∂cij

〉
. The filter response will model the

changes that can be achieved with a basis function refine-
ment, when we choose the kernel size to be close to that of
the refined basis functions.

Let 1 = e1 + ...+ es then the above consideration lead
us to define a refinement measure F by

F [BI ] =
∫

Ω

FσI
∗ (〈f(x, ϕ) +A[u],1BI(x)〉)2

dx , (13)

where FσI
∗ denotes convolution with a Gaussian of a ker-

nel width σI which should be chosen in the order of σI =
[vol[BI ]]

1/s
/4, where vol[BI ] is the volume of the convex

hull of the basis function support. A perfect fit would mean
that the only way (12) was not satisfied would be noise, and
F [BI ] would then be 0. However, if there is spatial co-
herency in the forces, f(x, ϕ) +A[u], then F [BI ] will give
an output suggesting to do a refinement of the mesh. This
criteria should guide the refinement.

In order to make efficient use of the proposed adapta-
tion scheme, we need a set of basis functions with spatially
varying local support.

4. Multivariate B-splines
The multivariate B-splines presented in this paper are us-

ing a basis of simplex splines. These splines are smooth
functions with local support. Several ways exist for com-
posing sets of simplex splines to form a partition of unity,
the most recent one, and the one presented in the current
work, being multivariate B-splines based on Delaunay con-
figurations [7]. Simplex splines and Delaunay configura-
tions are briefly discussed here. Throughout the dimension
is still denoted by s and the degree of the splines by n.

4.1. Simplex Splines

Simplex splines are defined iteratively with the zeroth
order spline defined on the simplex of s + 1 knots, e.g. a
triangle in 2D.

M(x|{x1, ...,xs+1}) ={
1/vol[{x1, ...,xs+1}], x ∈ int[{x1, ...,xs+1]

0 x /∈ int[{x1, ...,xs+1]

where M denotes the spline value, x is a point we wish to
evaluate, xi are the knot points of the simplex spline, int
refers to the convex hull of the set of points, and vol is the
volume of the convex hull.

The recurrence relation of the higher order simplex
splines is given by

M(x|X) =
∑

xi∈X

λiM(x|X\{xi}) , where

∑
xi∈X

λi = 1,
∑

xi∈X

λixi = x . (14)

Here X is a set of n+ s+ 1 knots (corresponding to a sim-
plex splineM of order n, and λ is seen to be the barycentric
coordinates of the points.

The simplex splines are n− 1 smooth on the convex hull
of the knots, when none three of the simplex splines are
collinear [7]. Examples of 2D simplex splines of different
orders are illustrated in Figure 2.



(a) Linear simplex spline (b) Quadratic simplex spline (c) Cubic simplex spline

(d) 4 knots for linear simplex (e) 5 knots for quadratic simplex (f) 6 knots for cubic simplex

Figure 2. Simplex splines of increasing order and smoothness.

For the elastic regularization discussed in Section B the
directional derivatives are needed, and the two first direc-
tional derivatives of the simplex splines are

dvM(x|X) = n

s∑
i=0

µi(v)M(x|X\{xi})

dv2dv1M(x|X) = n

s∑
i=0

µi(v2)dx,v1M(x|X\{xi}) ,

where
s∑
i=0

µi = 0,
s∑
i=0

µixi = x

Complexity The complexity of the multivariate B-splines
can be expressed in terms of the number of M0 nodes vis-
ited, and this is ns+1 if a naive implementation is chosen.
However, through fingerprinting visited nodes, this graph
can be reduced considerably [6]. When calculating the in-
terpolation values, the derivatives can be calculated simul-
taneously.

4.2. Delaunay Configurations

For choosing appropriate sets of knots for simplex
splines, the Delaunay configuration is needed. The Delau-
nay configuration is a generalization of the Delaunay trian-
gulation, where the circumscribed sphere contains exactly
n points. Denote a given Delaunay configuration of nth
order by ∆n. Let the set of all interior point sets, with
n points in each be denoted by I. Then a set of interior

points I ∈ I is associated with a set of boundary point sets
B(I) = {B|(B, I) ∈ ∆n}. We now define the multivariate
B-spline associated with n interior points I as [7]

BI =
∑

B∈B(I)

vol[B]M(.|B ∪ I) (15)

This normalization ensures a partition of unity, i.e.∑
I∈I

BI(x) = 1, x ∈ Rs (16)

Using these multivariate B-splines as a basis for describing
the deformation field, the field can be defined as

ϕ(x) = x+
∑
I∈I

cIBI(x), cI ,x ∈ Rs (17)

Silveira et al. have shown a strategy for efficient computa-
tion of the Delaunay configurations [14].

4.3. Mesh Layout and Refinement

For deriving an initial guess for placement of the knots,
it can be noted that (13) seems most likely to yield big val-
ues, in areas where the forces f(x,ϕ) attain big values. In
terms, we expect the most changes to our deformation field
to happen where the gradient is bigger, since the force and
the gradient are proportional, (6). For the initial coarse dis-
tribution of knots, we propose to distribute them randomly,
with a prior density based on the image gradient of the ref-
erence. Additionally, we add knots sequentially, according
to the following update scheme



(a) Multivariate B-spline

(b) Tensor product B-spline

Figure 3. Illustration of the flexible kernel of Multivariate B-
splines compared to the tensor product B-spline.
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(b) The Delaunay configurations

Figure 4. Illustration of a cell of a first order Delaunay config-
uration. Notice how point 1 is inside the 3 triangles circum-
scribed spheres forming the Delaunay triangulation of its con-
nected points. They constitute the whole cell with 1 as an inside
point.

f(xj+1|R, {x1, ...,xj}) ≈ f(xj+1|R)
j∏
i=1

f(xj+1|xi)

∝ (∇R)T∇R
‖∇R‖2

j∏
i=1

[
1− exp

{
− (x− xi)T (x− xi)

2σ

}]
,

where ∇R is the gradient of the reference, and σ is a ker-
nel diameter, where the kernel in effect limits the chance of
a second point being place in the immediate vicinity of a
knot. This function can be perceived as a prior probability
for placing knots, and they can be placed either according
to the maximum, or according to a random sampling. This
did not seem to have big effect on results though, due to the
subsequent mesh refinement.

We propose to make the mesh refinement based on sub-
division of the grid of the knots, where the B-splines are
expected to give most improvement in the cost function,
when subdivided, according to the refinement measure de-
rived in Section 3. To increase the resolution around a given
B-spline, we subdivide the inner points and their triangu-
lated neighbors. To enforce better subdivision, the subdi-
vided knots are tracked to a nearby gradient, using a lo-
calized version of f(xj+1|R, {x1, ...,xj}), localized by a
Gaussian. The process of subdivision can be performed re-
peatedly until a sufficiently good resolution is obtained.

The local forces, as well as the effect of smoothing is il-
lustrated in Figure 5. In Figure 5 (b), the forces are seen to
be directed towards the corpus callosum both upwards and
downwards. In average they even out, so there is no net
force on the parameter. In Figure 5(a) the differences are
seen to be intact after the smoothing. Therefore the refine-
ment function has an output, and the B-spline is selected for
subdivision.

5. Evaluation and Results
To support the methodological considerations presented

in the previous section, we applied our implemented method
on two data sets, both quite different in nature. Our image
registration algorithm is implemented for 2D images, due to
the 2D nature of our applications, but all observations and
equations stated in the current work are equally valid for
three dimensional data.

5.1. Groupwise Corpus Callosa Registration

To demonstrate the presented method, we did a group-
wise registration of 62 mid-sagittal cross-section MR im-
ages of the corpus callosum brain structure. To apply the
refinement measure (13) to a group of images, instead of on
a single image, we calculate the sum over the whole data set
for each B-spline, in order to ensure that our mesh refine-
ment yields the biggest groupwise improvement in terms of
minimization of the sum of squared differences.

This data set is part of the LADIS (Leukoaraiosis and
DISability) study [9], a pan-European study involving 12
hospitals and more than 700 patients. Each corpus callosum
has been manually segmented by a clinical expert. We used
these segmentations for further assessment of the method
(see Table 1).



(a) Local ’forces’ acting on
parameter

(b) Local ’forces’ acting on
parameter

(c) The B-spline basis function (d) The B-spline basis function

(e) Smoothed projection of forces (f) Smoothed projection of forces

Figure 5. Illustration of a basis function that will be updated (left
column), and one where the impact is not big enough (right col-
umn). Notice how (e) and (f) differ by an order of magnitude.

(a) Initial placement (b) 2nd level (c) 3rd level

(d) Initial placement (e) 2nd level (f) 3rd level

Figure 6. The grid refinement for a uniform setting and our non-
uniform setting on the corpus callosum data is illustrated here. Our
refinement is based on (13). Notice how the structures are nearly
segmented by the knots in the non-uniform case.

All images are registered to one image in the group, and
in Figure 7 some results of the image registration algorithm
are seen. The results of our implementation are compared to
the results obtained by rigid alignment and by using an FFD
algorithm, which is based on tensor product B-splines. Our

(a) Rigid (b) FFD (c) Multivariate

Figure 7. Checkerboard illustrations of registration results, where
the images are tiled from reference and registered image.

DICE Init. Run
Method median Sens. Spec. N time time
Multi. 0.85 0.91 0.99 407 32 149
FFD 0.83 0.91 0.98 640 1 221
Rigid 0.70 0.80 0.98

Table 1. Comparison of the warped segmentations and the refer-
ence segmentation after registration using a rigid transformation,
an FFD based method, and our multivariate method. Notice how
the initialization time (seconds) is larger, but the group-wise run-
ning time is smaller for the presented method, due to the reduced
number of nodes.

quantitative studies showed that the FFD with slightly more
control points gave inferior results, but still a significant im-
provement from the results of the rigid registration alone.
The pre-computations of the multivariate splines were a lot
more time consuming, but in the group-wise registration,
this time was regained in the optimization step, due to the
reduced number of control points.

5.2. Optical Flow Estimation

Baker et al. recently presented a database for compari-
son of optical flow results, where the quantitative results of
optical flow estimations can be compared to other available
algorithms [2]. The optical flow problem resembles the im-
age registration problem a lot, in the sense that we seek to
identify correspondences, or flow, across image pairs.

To test the current method on a different application we
did the optical flow estimation on the three data sets, from
the set, where ground truth flow is available, namely the
image pairs named Dimetrodon, Venus and Yosemite. In
Figure 8 the images are shown with the final grid resolution
and the estimated flow field is shown along with the ground
truth flow fields.

The results are summarized in Table 2. It is seen that
our implementation performs significantly better on the one
data set than any of the other methods in question, and
slightly worse than the best, for the two other data sets.

6. Conclusion
The current work has several contributions to the field of

parametric image registration.



(a) Dimetrodon image with knot mesh (b) Estimated Dimetrodon flow field (c) True Dimetrodon flow field

(d) Venus image with knot mesh (e) Estimated Venus flow field (f) True Venus flow field

(g) Yosemite with knot mesh (h) Estimated Yosemite flow field (i) True Yosemite flow field

Figure 8. One image of the optical data sets, and the estimated and true flow fields are shown.

Method Dimetrodon Venus Yosemite
Av. End point Avg. Angular Agv. End point Avg. Angular Avg. End point Avg. Angular

Current Method 0.20 4.09 0.72 10.74 0.16 3.10
Bruhn et al. 0.43 10.99 0.51 8.73 0.08 1.69

Black and Anandan 0.35 9.26 0.55 7.64 0.15 2.65
Pyramid LK 0.37 10.27 1.03 14.61 0.20 5.22
Zitnick et al. 0.94 15.82 0.85 15.48 0.68 11.09

MediaplayerTM 0.55 30.10 1.08 11.42 0.47 18.50

Table 2. Optical flow evaluation results compared to other contemporary methods

With an offset in variational optimization theory, we
have derived the parametric version of the elastic potential
regularization and in effect illustrating how the whole class
of differential operator derived regularizers, i.e. curvature
and bending energy, can be easily implemented in a para-
metric setting.

With the same methodology we have analyzed the inher-
ent smoothing or averaging cost, of selecting warp parame-
terizations at a specific kernel resolution, in comparison to
choosing a finer resolution of the warp kernels. Based on
these observations we have proposed a refinement measure,
which is shown to be efficient for guiding the local mesh
layout.

Though both previous results are useful in their own mer-
its, we have introduced the recently emerged multivariate
B-splines based on Delaunay configurations, to the field

of image registration. With the combination of our refine-
ment measure and the local flexibility of the multivariate
B-splines, we are able to automatically refine the warp field
in areas where it results in the minimization of the regis-
tration cost function. In effect we get something close to
a segmentation of objects allowing for better local control,
even where very inhomogeneous areas share a border.

A. Implementation

The inverse compositional optimization approach by
Baker et al. was used in our implementation to achieve a
fast optimization [1]. We obtain a minimum by iteratively



minimizing

Jic(c) =
∑
x

(R(ϕ(x,∆c))− I(ϕ(x, c))2

+
∑
i

F 2
i (ct− ∂c′

∂∆c
∆c) (18)

with respect to ∆c, and the regularizer is expressed as
F 2
i (c) as derived in Appendix B. The parameter updating

of c is done according to

ϕ(x, c′)← ϕ(x, c) ◦ϕ−1(x,∆c). (19)

B. Elastic regularization on Multivariate B-
splines

In this section the elastic regularizer and the Lamé op-
erator are derived for the multivariate B-splines, as. To use
the inverse compositional algorithm for the image registra-
tion, we formulate the regularizer as a sum of functions on
the parameters

S[u] =
∫

Ω

λ

2
(∇ · u)2 +

µ

4

s∑
i,j=1

[
∂ui
∂xj

+
∂uj
∂xi

]2

d x (20)

Using the basis representation (17) of u, we can represent
the elastic operator A = µ∆u + (λ + µ)∇(∇ · u) by the
following parameterizations

∆u =
s∑
i=1

∑
I∈I

cI
∂2

∂x2
i

BI =
∑
I∈I

cI

s∑
i=1

∂2

∂x2
i

BI

∇(∇ · u) =
s∑

i,j=1

∑
I∈I

eicIj
∂2

∂xi∂xj
BI (21)

For the inverse compositional optimization the regulariza-
tion term must be formulated as S[u] =

∑
i F

2
i (c). We

parameterize the terms∇ · u and ∂ui

∂xj
+ ∂uj

∂xi
by

∇ · u =
∑

I∈I,j∈{1,...,s}

cIj
∂

∂xj
BI (22)

[
∂ui
∂xj

+
∂uj
∂xi

]
=
∑
I∈I

cIi
∂

∂xj
BI + cIj

∂

∂xi
BI . (23)

It is clear that both terms are linear in c , which yields the
representation of F 2

i , when the integral is discretized.
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