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Interventional Tool Tracking using Discrete
Optimization

Hauke Heibel, Ben Glocker, Martin Groher, Marcus Pfister and Nassir Navab

Abstract—This work presents a novel scheme for tracking of
motion and deformation of interventional tools such as guide-
wires and catheters in fluoroscopic X-ray sequences. Being able
to track and thus to estimate the correct positions of these
tools is crucial in order to offer guidance enhancement during
interventions. The task of estimating the apparent motion is
particularly challenging due to the low signal to noise ratio
(SNR) of fluoroscopic images and due to combined motion com-
ponents originating from patient breathing and tool interactions
performed by the physician.

The presented approach is based on modeling interventional
tools with B-splines whose optimal configuration of control
points is determined through efficient discrete optimization. Each
control point corresponds to a discrete random variable in a
Markov random field (MRF) formulation where a set of labels
represents the deformation space. In this context, the optimal
curve corresponds to the maximum a posteriori (MAP) estimate
of the MRF energy. The main motivation for employing a discrete
approach is the possibility to incorporate a multi-directional
search space which is robust to local minima. This is of particular
interest for curve tracking under large deformation.

This work analyzes feasibility of employing efficient first-order
MRFs for tracking. In particular it shows how to achieve a good
compromise between energy approximations and computational
efficiency. Experimental results suggest to define both the external
and internal energy in terms of pairwise potential functions. The
method was successfully applied to the tracking of guide-wires
in fluoroscopic X-ray sequences of several hundred frames which
requires extremely robust techniques. Comparisons with state-of-
the-art guide-wire tracking algorithms confirm the effectiveness
of the proposed method.

Index Terms—X-ray fluoroscopy, Guide-wire tracking, Markov
random fields, Discrete optimization

I. INTRODUCTION

Minimally invasive procedures, in particular endovascular
interventions have become clinical routine. The common task
in these procedures is to navigate a medical tool to the
intervention situs. During this navigation task, physicians rely
on their mental three-dimensional knowledge of anatomical
structures as well as haptic feedback. The additional use of
imaging modalities such as ultra-sound or in case of angio-
graphic interventions X-ray images is crucial for a successful
navigation. It offers instant visual feedback while the tools
are maneuvered through the patient’s body towards the desired
situs.

The goal of this work is to estimate spatio-temporal infor-
mation of interventional tools which is necessary for the devel-
opment of a navigation solution as the one described in Section
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Fig. 1. MRF model of an open cubic B-spline curve C with control points
Pi. A sparse and a dense version of the discrete set of labels L capturing the
multi-directional search space are illustrated (each black square corresponds
to a displacement plus the zero-displacement at the control point position).

III. A possible approach to acquire this motion information is
by means of tracking the object of interest between adjacent
frames. The development of such an algorithm, however, is
difficult for several reasons. As a consequence of the low
energy X-rays used during fluoroscopic interventions, the im-
ages being used during the motion estimation usually exhibit a
low SNR. Furthermore, since interventional tools are thin one-
dimensional structures, they are oftentimes hard to distinguish
from cluttered anatomical background such as bone and organ
interfaces. Another difficulty which arises during tracking of
guide-wires and catheters is the non-linearity of the motion.
As opposed to rigid transformations, tools are deforming and
changing their shape and size as a result of patient breathing,
heart motion and tool interactions of the physician. Finally,
since the images are generated by perspective projection of
radio transparent structures the constant brightness assumption
is violated which prohibits the use of well known optical flow
techniques in order to perform the motion estimation.

This paper presents a novel framework for the tracking of
curves as well as a method for the semi-automatic tracing of
interventional tools which is required during the initialization.
The derivation of a discrete scenario based on a MAP-MRF
formulation allows to regard the tracking solution as the choice
of an optimal labeling only comprising the control points of
the curve (see Fig. 1). The discrete setting is appealing as
it incorporates a multi-directional search space which is more
robust to local minima. This is a major advantage compared to
gradient-based approaches which follow only a single search
direction, e.g. the one of steepest descent. In particular when
the curve to be tracked undergoes large deformation between
consecutive frames gradient descent may fail, while the dis-
crete multi-directional search can still find the correct solution.
The benefit of multi-directional search has also been recently
shown in the context of mesh alignment by Kainmueller
et al. (2010). The derivation of the discrete setting requires
care to minimize model dependent approximation errors and
several methods to diminish such errors are presented and
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evaluated in this work. The tracking algorithm is evaluated
on 17 clinical sequences and compared to a state-of-the-art
guide-wire tracking algorithm confirming its effectiveness. The
presented algorithm performs near real-time and proves to be
both robust and accurate. The presented methods extend and
improve the approach presented earlier in the work of Heibel
et al. (2009).

The remainder of the paper is organized as follows. First,
we will revisit previous work in the field of interventional
tool tracking. In Section III we present the application context
which requires image-based tool tracking. Afterwards, our
method is described in detail in Section IV. A thorough
evaluation is presented in Section V. It consists of three
parts where we evaluate different components of our method.
Finally, we conclude and discuss our approach in Section VI.

II. RELATED WORK

In this section we discuss existing approaches for tracking
guide-wires during fluoroscopic interventions. Even though
related, approaches tracking closed curves representing con-
tours of objects (Yilmaz et al., 2006) are not discussed since
guide-wires (as well as needles) can be adequately modeled
only by open curves. To our best knowledge, so far none of
the methods discussed in this section is yet fully suitable for
everyday use in clinical practice.

The work of Palti-Wasserman et al. (1997) is the first
to tackle the guide-wire tracking problem. It introduces the
possibility to use guide-wire detection and tracking in order to
extract functional information of the myocardium. The method
detects a guide-wire by fitting a second-degree polynomial
onto data produced by low-dose X-ray images filtered by a
Laplacian or Marr-Hildreth kernel.

Baert et al. (2003a) propose a guide-wire tracking procedure
based on energy minimization of a B-spline parameterization.
The method is stratified, i.e. at first a rigid transformation
of the guide-wire is estimated which is followed by com-
puting the remaining deformable component through energy
optimization via Powell’s direction set method. The external
energy is based on feature images which are constructed by
enhancing line-like structures of the initial spline position. For
this work it is of interest to note that the authors conclude
that they achieve a tracking precision “similar to the inter-
observer variability” when using Hessian feature images. A
second stratified approach similar to Baert et al. (2003a) is
presented by Slabaugh et al. (2007). Here, however, the energy
term is modeled such that smoothness is not only enforced but
an additional soft constraint penalizes changes of the curve’s
length.

A quite different approach has recently been presented by
Wang et al. (2009). Here, the authors incorporate learning-
based measurements for solving the tracking problem. Again,
guide-wires are modeled by B-splines and the problem is
solved in a stratified way. The objective functions are for-
mulated in a Bayesian framework where a prior term is used
to penalize deviations from the previously tracked curve. The
likelihood term is a combination of the results of an AdaBoost
classifier and an appearance-based measure in which intensity

differences to the previously detected curve are penalized. For
the non-rigid tracking the authors add functions of the first-
and second-order derivatives of the curves to regularize the
optimization process.

Pauly et al. (2010) present an alternative tracking procedure
also being based on learning. The work uses a likelihood term
which utilizes mean orthogonal intensity profiles. The profiles
are mapped through a learned support vector regression (SVR)
to numerical values which can be interpreted as probabilistic
measurements. Those measurements are computed for overlap-
ping segments of the curve and their sum represents the curve’s
likelihood term. The prior is ensuring length preservation and
the optimization is carried out in a MAP-MRF framework as
Heibel et al. (2009) propose.

The work of Petkovic and Lencaric (2010) proposes an en-
hancement method for guide-wires incorporating time by mod-
eling intensity changes through the employment of Kalman
filtering techniques. The drawback of the method is that it
assumes a stationary patient in order to be able to establish
a background estimate while at the same time requiring a
moving guide-wire. The authors state that the approach does
not perform well for parts of the guide-wire where it does not
exhibit any motion.

Brost et al. (2010) use catheter tracking in a bi-plane C-
arm scenario to reconstruct guide wires in 3D, while Ma et al.
(2011) detect eletrode features to improve catheter tracking.
Both methods employ application-specific information addi-
tional to the actual guide-wire and are thus not discussed in
more detail.

An overview of all relevant tracking methods including
ours is given in Table I. The last entry of the table is
intended to give the reader a rough idea of the magnitude
of the individual algorithm’s run-times. Since the experiments
were performed on separate systems with different processors
and program environments, these values cannot be directly
compared. Furthermore, the different methods offer different
levels of potential regarding optimizations which follows that
faster run-times may be achieved.

To summarize, all methods dealing with guide-wire tracking
are using B-splines for modeling interventional tools (guide-
wires, catheters and even needles since they may bend).
However, all of the methods have drawbacks which hamper
the every-day use in clinical practice: Petkovic and Lencaric
(2010) cannot track guide-wires without motion, a situation
likely to find in a clinical setting. Wang et al. (2009) and Pauly
et al. (2010) require manually labeled training data to perform
the tracking and cannot be applied right away to the multitude
of different C-arms exhibiting a variety of parameters and thus
output images. Baert et al. (2003a) and Slabaugh et al. (2007)
use a stratified technique, which is implicitly slower than non-
stratified methods. To the best of our knowledge there is still
no fully robust and automatic technique available that can be
used on the wide range of applications for guide-wire tracking.

III. APPLICATION CONTEXT

The application we envision for endovascular interventions
is a navigation system similar to the ones proposed by



3

TABLE I
OVERVIEW OF DIFFERENT GUIDE-WIRE TRACKING METHODS.

method parameter estimation likelihood prior stratified run-time (ms/frame) a

Baert et al. continuous different feature image curvature yes 5000 (0.2 fps)
Slabaugh et al. continuous feature image (phase congruency based) curvature & length changes yes 175 (5.7 fps)
Wang et al. coarse-to-fine, exhaustive AdaBoost classifier & intensity differences displacements yes 500 (2 fps)
Pauly et al. discrete SVR of orthogonal intensity profiles length changes no 660 (1.5 fps)
proposed method discrete feature image (Hessian & gradient based) length changes no 60 (16.7 fps)

Palti-Wasserman et al. b n/a feature image (mod. Laplacian & Marr-Hildreth) n/a n/a n/a
Petkovic and Lencaric b n/a feature image (Kalman) n/a n/a 40 (25 fps)
a The given run-times cannot directly be compared since they are assessed on different systems, but provide an idea of the magnitude of the algorithm

run-times.
b The last two methods are separated since they are posing the tracking problem slightly different and cannot directly be compared to the other methods.

van Walsum et al. (2005) or Bender et al. (2008). An opti-
mal system should be leveraging pre-interventionally acquired
image data being for instance generated by 3D rotational
angiography (3DRA) which can be used to create a 3D model
of the vessel system and in-turn to visualize the guide-wire
position. The fused visualization of vessels and interventional
tools could then be done directly in 3D or alternatively in a
2D overlay – a so called roadmap.

A typical recipe for such a navigation system can be
formulated to contain the following core components:

1) Tool Detection
2) Motion Tracking
3) Data Annotation

In abdominal or cardiac interventions, the data annotation
is hampered by patient motion, mainly induced by heart
beat and respiration. Hence, tracking the tool in fluoroscopic
images and a subsequent correction of the apparent motion is
inevitable to provide a fully fledged navigation system. Such
a system is expected to have advantages such as reduction of
intervention time, improved success rates, fewer complications
and lowered contrast dye application.

This work is primarily dealing with part 2 of the afore-
mentioned components. Due to the self-similarity of guide-
wires along the curve, it is difficult to develop a method which
performs the motion estimation as well as the tool tip detection
in a single step. Therefore, we focus on the tracking of a
segment of the guide-wire. If the actual tool-tips were required,
the provided motion data could be used to initialize an explicit
end-point detection scheme such as the one proposed by Baert
et al. (2003b).

IV. METHOD

Most tracking algorithms consist of two phases – the
initialization phase where the object to be tracked has to be
identified, and the tracking phase where the previous position
of this object is known and its new position needs to be
detected. In this work we will focus on the second phase
though we will provide a semi-automatic strategy for handling
the initialization. So called feature images are an important
component of tracking algorithms since they usually comprise
the external forces which drive the optimization process.
Typically such images are acquired by enhancing edges, lines,
or corners through image filtering techniques. For this work,
we are using the well known feature images from Koller et al.

Fig. 2. Closeup of minimal initialization-graph with branching points. Red
lines present graph edges and the green arrows the direction of principal
curvature of graph nodes.

(1995). Alternatively, one could also make use of features as
defined by Frangi et al. (1998). In the following, we provide
an example for dealing with the initialization phase and then,
we will focus on the tracking phase by introducing the curve
model and our tracking algorithm.

A. Initialization

Currently, no method for the fully-automatic detection of
guide-wires in fluoroscopy exists which produces results of
sufficient accuracy (Mazouer et al., 2009). In this section we
present an approach for the semi-automatic detection of guide-
wires being based on shortest paths and structural information
contained in the second-order derivatives. The approach is
similar to the work recently presented by Schneider and
Sundar (2010).

At first, our initialization procedure requires the user to
select two points close to the extremities of the tool. The basic
idea is that the algorithm tries to connect these two points by
traversing pixels supposedly belonging to the interventional
tool. Given the initial points, the system picks any of them
and starts growing a graph by selectively adding neighbors
of the current point. Once the neighbor-selection for a single
point is done, the algorithm continues growing the graph on
the yet unprocessed neighbors. The graph creation process is
continued until the initially selected end-point has been added
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Fig. 3. Neighbor selection based on tangent direction ti (corresponding to
the red vector). The green squares indicate the selected neighbors

to the graph or until no new neighbors can be added. If the
graph does not already contain both initially selected points,
the graph growing process is repeated from the initial point
which is still missing. Again, the growing process continues
until both points are present in the graph or until further
growing fails. In the latter case the initialization would fail and
require a retry. This would not be the case with methods which
incorporate every single pixel in the graph (e.g., Schneider
and Sundar, 2010) but the interactive nature of the proposed
method outweighs the rare need of re-initializations.

As soon as the graph generation is finished, a connection
between the two user selected nodes is computed via Dijkstra’s
shortest path algorithm. A partial input graph can be found
in Figure 2. This figure also depicts the fact that only a
fraction of the pixels in the image is selected and that these
pixels are furthermore located on structures looking similar to
interventional tools.

We will now define how neighbors are chosen and how the
edge weights for the shortest path estimation are computed.
From differential geometry we know that the eigenvector of the
Hessian of image intensities, corresponding to the eigenvalue
having smallest absolute value is pointing in the direction of
least (principal) curvature. In our case this means that the
eigenvector is aligned tangential to the interventional tool.
Such eigenvectors are represented by the arrows in Figure
2. Given a unit length tangential vector ti we choose the
three neighbors (see green boxes in Figure 3) from the 8-
neighborhood of point pi by investigating the tangent direction
λ = atan2(tyi , t

x
i ). This angle will fall into one of eight

sectors each spanning 45◦ and each defining a single triplet
of neighbors. A neighbor pi+1 is added to the graph if its
corresponding vesselness I is non-zero, i.e. if

I(pi+1) > 0 (1)

and if the angle γ between the current point’s tangent ti
is pointing in a similar direction as the potential neighbor’s
tangent ti+1, which is expressed as

γ = arccos
(
‖ 〈ti, ti+1〉 ‖

)
≤ 45◦ . (2)

The first condition from Equation (1) is based on the vessel-
ness measure of Koller et al. (1995). This measure, referred to
as I ∈ [0; 1], is non-zero if and only if the largest eigenvalue of
the Hessian at point pi+1 is large and positive which ensures
that only dark 1 and line-like structures are being traced.
Equation (2) ensures that tangential vectors located at pi and
pi+1 are pointing in similar directions which is motivated by
the assumption that the object shape we want to segment is
smooth. Finally, weights for the edges connecting the points
pi and pi+1 need to be assigned. Here, we chose

w =
(
1− I(pi+1)

)
γ2

which implies high values for points pi+1 having a small
vesselness (i.e. a low edge-cost for those belonging to an
interventional tool) and it also means that it is cheaper to
connect points if the angle γ between their tangents is small.
After running Dijkstra’s shortest path algorithm we obtain an
ordered set of points

Q = {q1,q2, . . . ,qL}
which are representing the desired curve. This simple but
effective method cannot deal well with objects having self-
intersections. Then again, the method does not require any
learning, is easy to control and straight forward to implement
as opposed to the more complex approaches represented by
Mazouer et al. (2009) and Honnorat et al. (2010).

In the next section we describe how the point set Q
can be represented in a compact way which enables more
efficient optimization strategies and already imposes geometric
constraints like certain smoothness on the curve.

B. Curve Model

B-spline curves represent a convenient way of modeling in-
terventional tools. The main advantages are a low-dimensional
representation of a continuous curve, the implicit smoothness,
and the local support of individual control points. A B-spline
curve is defined as the linear combination of control points.
Without loss of generality, we consider the particular definition
of an open curve2

C(s) =

M∑
i=1

Ni(s)Pi where s ∈ [0, 1] (3)

where Ni denote the basis functions and Pi the positions of
M control points.

In order to track an interventional tool or object boundary,
we seek an optimal fit to the data Q by finding a compromise
between closeness and smoothness. An implementation of such
a method called parcur is publicly available in the library
FITPACK Dierckx (1987). The method computes the optimal
control points Pi as well as their number. In this work we are
using B-splines of order 4 (cubic splines) for modeling guide-
wires. The upper bound for the number of control points is
set to 12.

1They appear as bright features in the image I after the enhancement as
can be seen in Figure 2.

2Closed curves can be constructed by merging certain tuples of control
points.
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C. Curve Tracking in the Continuous Domain

In the following we review the general continuous formu-
lation of the curve tracking problem. Given an initial curve
C, we want to estimate the curve model parameters which
provide the best fit of the curve to the corresponding structures
visible in an image. A common approach of formulating such
a problem is through a MAP estimate. Given an observation
I (in our case a feature image), the MAP estimate is defined
as

C∗ = arg max
C∈F

P (I |C)P (C) (4)

where C∗ is the optimal curve, P (I |C) is the likelihood prob-
ability of the estimate and P (C) encodes the prior probability
information on the set of feasible solutions F. Assuming the
probability distributions follow a Gibbs distribution with an
underlying energy function, we can equivalently find the MAP
via an energy minimization

C∗ = arg min
C∈F

E(I |C) + E(C) (5)

where the likelihood energy E(I |C) acts as a cost function
measuring the quality of a certain model configuration, and
the prior energy E(C) acts as a regularization term on the
parameter space. In our scenario the likelihood term

Eext(I |C) =
1

l

∫ 1

0

ψ
(
I
(
C(s)

))
ds , (6)

which is also referred to as the external energy, is driving the
curve to its actual position. The variable l represents the curve
length and is computed as

l =

∫ 1

0

‖C ′(s)‖ ds . (7)

In Equation (6), ψ is used to make the feature image’s
values suitable for minimization. In our case, we simply chose
ψ(x) = 1 − x because we ensure that image responses are
normalized to the interval [0, 1]. The prior term, also referred
to as internal energy, constrains the motion of the curve.
We use the same method as in our previous work (Heibel
et al., 2009) where we penalize changes of the curve length
compared to the initial curve. These changes are penalized via
the squared relative error

ρ(v, vinit) =

(
1− v

vinit

)2

, (8)

where v is the currently observed value and vinit the initial
value we want to retain throughout the tracking. The actual
length preserving regularization is then carried out by com-
puting

Elen
int (C) =

1

l

∫ 1

0

ρ
(
‖C ′(s)‖, ‖C ′init(s)‖

)
ds . (9)

This kind of regularization prevents the curve from collapsing
into a singular point. In the equations above C ′ denotes the
derivative of the parametric curve C with respect to s.

The total energy of the curve tracking problem can be
formulated as

Etotal = (1− λ)Eext + λElen
int (10)

where λ weighs the external against the internal energy.
In continuous optimization, minimizing the above energy is

commonly done via gradient descent. The initial contour is
updated iteratively by computing the derivative of the energy
function with respect to the model parameters. The algorithm
stops if no further improvement on the energy can be achieved,
meaning the method converges to a local minimum. Even if
sometimes convenient to use, such an approach has limitations.
A particular issue is the initialization. It is assumed that the
initial contour is sufficiently close to the correct solution,
otherwise gradient descent is likely to converge to a bad
solution. Assuming that previous curve positions yield good
initializations limits the applicability to scenarios with small
deformations. However, in practice many sequences exhibit
large motions of up to 50 pixels (see Table IV). In our
discrete approach, we incorporate a multi-directional search
which allows to find solutions which are not constrained to the
direction of the gradient, and thus, provides a robust tracking
algorithm. The details are given in the following section.

D. Discrete Curve Tracking with MRFs

Let us consider a graph G = (V, E) consisting of a set of
discrete variables or nodes V and a set of edges E connecting
neighboring pairs of variables in order to represent their
dependencies. Additionally, we introduce a discrete set of
labels L capturing the search space of the model parameters.
Each label xi ∈ L is associated with a two-dimensional
displacement vector dxi from the deformation space D ⊂ R2.
Two different possibilities for the discretization (a sparse and
a dense one) of the deformation space are illustrated in Figure
1. If we associate each control point of our B-spline model
with one node of our graph, the task is to assign an optimal
label to each of the nodes or a displacement to each of the
control points, respectively. A common approach for modeling
the labeling task in terms of energy minimization is the usage
of first-order MRFs (Li, 2001)

Emrf =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (11)

where θi are the unary potentials and θij are the pairwise
potentials.

In most applications, the unary terms play the role of the
likelihood energy and independently from all other nodes, they
evaluate the cost for an assignment of a certain label xi. In
such a scenario the pairwise interaction terms are used to
model regularization between neighboring nodes.

The assumption that the likelihood of a labeling can be
computed from a sum of independent unary terms, however,
is not valid in our scenario. Considering B-splines with higher-
order basis functions, the effect of a single control point on
the deformation of the curve cannot be modeled independently
from its neighbors because neighboring basis function overlap.
In order to overcome this problem, we propose a novel MRF
model for the case of curve tracking using B-splines.

An important component of this model is the integration of
the basis functions as weighting coefficients within the energy
terms. Thus, curve points close to a certain control point will
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Fig. 4. Influence functions originating from an open cubic B-spline with eight control points.

have more influence on its energy than points farther away.
A similar approach is used by Glocker et al. (2008) where
the authors are using MRFs for non-rigid image registration
based on cubic B-splines. Such a weighting allows a suitable
approximation of the energy terms with respect to the control
points.

For improving this approximation, we propose to reformu-
late the external energy from the continuous domain also as
pairwise interaction terms. Modeling the external energy as
pairwise terms has big advantages. The non-vanishing interval
of basis functions along the curve domain for control point
tuples is bigger than the interval corresponding to a single
control point and compared to unary potentials, the energy
computation for the simultaneous movement of a pair of
control points yields a more accurate approximation of the
continuous energy. In this work we define the MRF energy as

Emrf =
1

l

∑
(i,j)∈E

(
(1− λ) θijext(xi, xj) + λ θijlen(xi, xj)

)
.

(12)

The discrete version of the energy from Equation (6) is then
composed of the pairwise terms

θijext(xi, xj) =
∑
s∈Ωij

N̂ij(s)ψ
(
I
(
Cij(xi, xj , s)

))
. (13)

Similarly we reformulate Equation (9) as

θijlen(xi, xj) =
∑
s∈Ωij

N̂ij(s) ρ
(
‖Cij(xi, xj , s)‖, ‖Cinit(s)‖

)
.

(14)

In the equations above, the weighting coefficients N̂ij(s)
evaluate the influence of a curve point s on the energy of
a control point pair (i, j). The integrals from Equations (6)
and (9) are turned into discrete sums over s from the support
Ωij = supp

(
N̂ij(s)

)
.

Intermediate deformations of the curve C are denoted
by Cij . In our earlier work (Heibel et al., 2009) these
deformations were computed by applying the corresponding
displacements dxi and dxj to the control points Pi and Pj

only, which we revised in this paper. The initial modeling was
problematic in the presence of large deformations because it
was assuming that neighbors of Pi and Pj were not moving
at all when the energies θij(xi, xj) were evaluated. This led
to an increase of the approximation errors with increasing
deformations. The new approach assumes that neighboring
control points exhibit similar motions which brought us to the

idea of applying the potential displacement dxi to all control
points P1, . . . , Pi and likewise the displacement dxj to the
remaining control points Pj , . . . , PM . This novel deformation
model can be expressed as

Cij(xi, xj , s) = C(s) +

i∑
l=1

Nl(s)d
xi +

M∑
l=j

Nl(s)d
xj .

(15)

Due to the locality of B-splines, Equation (15) contains only
d + 1 basis functions Nl(s) which are non-zero when the
underlying spline has degree d. This means that only d + 1
control points and their associated displacements contribute to
the deformation of Cij(xi, xj , s).

Regarding the influence functions N̂ij(s), we are consider-
ing two different versions in this work – either through the
addition of basis functions which we call the sum model (see
Figure 4(b))

N̂+
ij (s) =

Ni(s) +Nj(s)∑M
l=1Nl(s) +Nl+1(s)

(16)

or through multiplication which we will refer to as the product
model (see Figure 4(c))

N̂∗ij(s) =
Ni(s)Nj(s)∑M

l=1Nl(s)Nl+1(s)
. (17)

The normalization is required in order to ensure that the
discretized version of the energy term from Equation (12) is
correctly approximating the continuous version from Equation
(10) which is true if all non-zero influence functions at a site
s sum up to 1.

The performance of the two weighting functions is evaluated
in our experiments in Section V-B and compared to the stan-
dard approach where external energies are modeled through
unary potentials (see Figure 4(a)), i.e.

θiext(xi) =
∑
s∈Ωij

Ni(s)ψ
(
I
(
Ci(xi, s)

))
ds. (18)

It turns out that the product model performs best of all
methods due to its limited support and its related faster decay
of the influence function. We show furthermore that our model
represents a good compromise between model accuracy and
complexity. The approximation error could be reduced (or even
completely removed) if more complex MRF models are used.
However, the consideration of higher-order cliques (Rama-
lingam et al., 2008) is computationally too time-consuming
in real-time environments even despite recent developments
(Ishikawa, 2009) .
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E. Optimization

Once our problem is formulated in a discrete setting, we
need to choose an MRF optimization strategy. Fortunately, re-
cent advances in discrete optimization brought a couple of very
powerful techniques, typically based on iterative graph-cuts or
efficient message passing. Regarding our specific model, two
properties were considered when using one of the existing
techniques. First, our graph is a chain (see Fig. 1) allowing the
exact computation of the global optimal labeling when using
max-product algorithms (e.g. Belief Propagation, Pearl, 1988;
Weiss and Freeman, 2001 or TRW-S, Kolmogorov, 2006).
Second, our energy is nonsubmodular which is a (theoretical)
problem for some methods using graph-cuts (Kolmogorov and
Zabih, 2004). However, certain truncation techniques (Rother
et al., 2005) on the energy terms make it still possible to use
graph-cut based techniques (e.g. Expansion Move, Boykov
et al., 2001). There are also methods based on iterative graph-
cuts which can handle a wider class of MRF energies (e.g.
Swap Move, Boykov et al., 2001 and FastPD, Komodakis
et al., 2007). Yet another alternative for our kind of energy
function is iterative quadratic pseudo-boolean optimization
(QPBO, Kolmogorov and Rother, 2007) which is also able to
minimize nonsubmodular functions. The particular choice of
one optimizer over another is discussed in more detail in the
sections of the individual experiments.

model

max. def. unary sum model product model

6 1.00(±0.43) 0.34(±0.19) 0.28(±0.17)
8 1.15(±0.52) 0.36(±0.23) 0.30(±0.19)
10 1.33(±0.60) 0.42(±0.25) 0.36(±0.22)
12 1.41(±0.70) 0.43(±0.27) 0.36(±0.23)
14 1.74(±0.82) 0.48(±0.30) 0.43(±0.28)
16 1.79(±0.93) 0.49(±0.32) 0.43(±0.29)
18 2.00(±1.04) 0.52(±0.34) 0.47(±0.32)
20 2.19(±1.15) 0.57(±0.40) 0.52(±0.34)

TABLE II
SYNTHETIC EXPERIMENT FOR ASSESSING THE ENERGY

APPROXIMATION ERROR UNDER DIFFERENT AMOUNTS OF
DEFORMATION AND THREE DIFFERENT INFLUENCE MODELS.

REPORTED ARE THE AVERAGE CURVE DISTANCES AND STANDARD
DEVIATIONS IN PIXELS OVER ONE HUNDRED FRAMES PER

SEQUENCE.

V. EVALUATION AND RESULTS

In this section we present the performance analysis of our
approach. The evaluation consists of three parts. First, we show
with a synthetic example that the optimal influence function
is the product model from Equation (17). Next, we evaluate
sparse versus dense label sets as well as how optimization
approaches computing the optimal labeling solution compare
to approximative algorithms. For the second part of the
evaluation we choose TRW-S, FastPD as well as QPBO as
representatives of the two possible optimization classes where
TRW-S represents the class of algorithms computing optimal
labelings, while the other two allow real-time performance.
The last part presents evaluations of the tracking algorithm

on clinical data labeled by an expert and comparisons to the
guide-wire tracking approach presented by Wang et al. (2009).

A. Error Assessment

Before continuing with the experiments, the assessed error
measures need to be defined. As opposed to the commonly
used Hausdorff distance a discretized and asymmetric error
measure defined as

d(C,CG, s) = min
t

( ∥∥C(s)− CG(t)
∥∥

2

)
(19)

is used in this work. In the Equation (19), C is the currently
observed curve and CG the manually annotated ground-truth
curve. We compute the minimal distance between between
the tracked and annotated curve. Evaluating Equation (19) at
different sites s allows us to compute the mean tracking error,
its standard deviation as well as the median. This error function
is advantageous since it does not penalize single outliers which
is important because only curve segments are tracked between
adjacent frames. Furthermore, Equation (19) is corresponding
to the error assessed in other works as e.g. Wang et al. (2009)
and thus providing a better basis for comparing such methods.

Additional statistics, namely the percentage of missed an-
notated pixels and the percentage of falsely tracked pixels are
computed for the comparison with the work of Wang et al.
(2009). The missed pixels are pixels of the annotation having
a distance to the tracked curve being higher than a specific
threshold. Similarly, the false pixels are those on the tracked
curve being farther away from the annotation as defined by
the same threshold. Following with previous works, we choose
this threshold to be equal to 3 pixels.

B. Approximation Error

Our first experiment is evaluating different ways of dimin-
ishing our inherent approximation errors. In order to measure
the influence of the approximation error we perform several
tests on synthetic data. An initial open B-spline curve with
six control points is deformed by assigning random labelings.
After the deformation, an image frame is generated by careful
rasterization. This frame is in turn used for the tracking
algorithm. This procedure is repeated for a single sequence
based on the same initial curve until 100 frames are generated.
Overall, eight sequences are generated where each sequence
is created with a different upper bound on the maximum
deformation assigned by the random labelings.

In this experiment we use the TRW-S (Kolmogorov, 2006)
as the optimization method since it can recover the global
optimal solution for tree-like MRF topologies (Pearl, 1988).
By knowing that the exact ground truth spline is within our
discrete label space, we can estimate the error induced by
the energy approximation only. Since each frame from every
sequence is generated from the exact same initial curve and
since in this experiment the system is reinitialized with that
specific curve in every frame, we can discard the regularization
term (i.e. set λ = 0) and thus remove any regularization
dependent bias.

As mentioned before, different amounts of maximum de-
formations are used in each sequence, ranging from 6 to 20
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sparse dense

max. def. steps TRW-S FastPD QPBO TRW-S FastPD QPBO

5 0.32(±0.11) 0.44(±0.14) 0.35(±0.11) 0.30(±0.10) 0.41(±0.14) 0.33(±0.12)
6 10 0.32(±0.11) 0.43(±0.13) 0.33(±0.11) 0.29(±0.10) 0.40(±0.12) 0.33(±0.12)

20 0.31(±0.10) 0.43(±0.13) 0.33(±0.12) 0.29(±0.10) 0.39(±0.13) 0.32(±0.11)
5 0.42(±0.13) 0.59(±0.28) 0.48(±0.20) 0.37(±0.12) 0.53(±0.18) 0.43(±0.16)

8 10 0.41(±0.14) 0.56(±0.22) 0.45(±0.18) 0.35(±0.12) 0.48(±0.18) 0.40(±0.15)
20 0.40(±0.14) 0.55(±0.22) 0.44(±0.17) 0.35(±0.12) 0.48(±0.17) 0.40(±0.14)
5 0.52(±0.16) 0.76(±0.29) 0.61(±0.23) 0.48(±0.12) 0.69(±0.25) 0.57(±0.24)

10 10 0.51(±0.15) 0.74(±0.28) 0.59(±0.23) 0.43(±0.12) 0.66(±0.25) 0.54(±0.20)
20 0.50(±0.15) 0.73(±0.29) 0.57(±0.18) 0.44(±0.12) 0.64(±0.26) 0.54(±0.22)
5 0.62(±0.24) 0.87(±0.39) 0.72(±0.34) 0.53(±0.20) 0.75(±0.33) 0.65(±0.31)

12 10 0.60(±0.23) 0.84(±0.33) 0.69(±0.29) 0.50(±0.17) 0.70(±0.26) 0.64(±0.38)
20 0.59(±0.22) 0.82(±0.33) 0.70(±0.33) 0.48(±0.16) 0.73(±0.38) 0.61(±0.36)
5 0.75(±0.27) 0.98(±0.39) 0.85(±0.34) 0.59(±0.22) 0.86(±0.39) 0.75(±0.36)

14 10 0.71(±0.29) 0.93(±0.42) 0.84(±0.39) 0.56(±0.20) 0.82(±0.42) 0.71(±0.41)
20 0.71(±0.28) 0.93(±0.44) 0.82(±0.38) 0.56(±0.21) 0.79(±0.46) 0.71(±0.39)
5 0.91(±0.49) 1.30(±0.75) 1.13(±0.75) 0.69(±0.33) 1.17(±0.89) 0.95(±0.70)

16 10 0.88(±0.47) 1.34(±0.96) 1.04(±0.65) 0.67(±0.28) 1.24(±0.97) 0.98(±0.79)
20 0.87(±0.48) 1.33(±0.89) 1.09(±0.68) 0.66(±0.29) 1.14(±0.89) 0.94(±0.77)
5 1.11(±0.56) 1.47(±0.90) 1.26(±0.76) 0.89(±0.54) 1.34(±0.96) 1.22(±0.87)

18 10 1.07(±0.56) 1.42(±0.84) 1.20(±0.70) 0.84(±0.49) 1.29(±0.95) 1.18(±0.94)
20 1.07(±0.59) 1.48(±0.90) 1.25(±0.77) 0.84(±0.51) 1.28(±0.93) 1.13(±0.84)
5 1.16(±0.64) 1.54(±0.81) 1.38(±0.76) 0.96(±0.46) 1.37(±0.86) 1.20(±0.74)

20 10 1.09(±0.68) 1.52(±0.87) 1.27(±0.70) 0.85(±0.45) 1.40(±0.98) 1.16(±0.78)
20 1.08(±0.63) 1.51(±0.84) 1.31(±0.69) 0.83(±0.38) 1.33(±0.95) 1.14(±0.69)

5 119.49 25.80 38.15 356.00 30.55 33.61
run-time (ms) 10 493.13 39.53 51.42 > 4.5 · 104 71.22 70.07

20 1573.80 68.36 81.49 > 1.1 · 105 303.56 284.03

TABLE III
SYNTHETIC EXPERIMENT FOR COMPARING THE SPARSE AND DENSE DEFORMATION SPACE DISCRETIZATION. RUN-TIMES ARE
ASSESSED ON A 1.6 GHZ INTEL CORE I7. ALL ERRORS ARE REPORTED IN PIXELS. THROUGHOUT THE EXPERIMENT FASTPD

WAS CONFIGURED WITH A MAXIMUM OF 100 ITERATIONS AND QPBO WITH 2 OUTER SWEEPS.

pixels control point displacements. We evaluate both proposed
pairwise versions, the sum model and the product model, as
well as the standard approach with unary potentials for the
external energy. For a quantitative evaluation of the synthetic
results, we evaluate the mean of the distances (and their
standard deviations) from Equation (19) at different, uniformly
sampled arc-length sites s.

The results are summarized in Table II. The product model
performs best on all sequences because it exhibits a limited
support. Moreover, it is in this way reducing approximation
errors introduced by the incomplete modeling of the displace-
ment inter-dependency. Especially, if larger deformations are
considered the approximation error has a strong influence in
case of unary potentials while both pairwise models still yield
good results of an average error of less than one pixel.

C. Deformation Space Discretization

The second experiment is intended to evaluate different
discretization strategies as well as the effect of approximat-
ing optimizers like FastPD or QPBO. Since the number of
labels is an important parameter for the runtime of MRF
optimization techniques, we want to determine a reasonable
compromise between speed and tracking accuracy. We propose
two different strategies for discretization, a sparse one and
a dense one, see Figure 1. Both versions are parametrized
by two values, the number of sampling steps along a certain
displacement direction and the range which defines the allowed
maximum displacement. This construction yields a multi-

directional search space which is an important property for
curve tracking applications. In case of sparse discretization, the
deformation space is sampled along eight directions, namely
horizontal, vertical and diagonal each in positive and negative
direction. In case of dense sets, we sample the complete square
space at a control point. Given the number of steps S, we
get |Lsparse| = 8S + 1 including the zero-displacement. For
the dense version we get |Ldense| = (S + 1)2. Similar to
the first experiment, we generate eight synthetic sequences by
assigning uniformly distributed random displacements on the
six control points. The main difference is that this time the
ground truth is not covered by our label space. The range of
the label space is set to the maximum random deformation
and we test different values for the number of sampling steps,
namely 5, 10, and 20.

Another difference is that the initial curve used during the
tracking is not parameterized in the same way as the curve
used to generate the synthetic data. Therefore, the experiment
does not only reflect errors resulting from deformations which
are not covered by the label space but also those errors
resulting from a sub-optimal curve parameterization.

Again, we use the mean distance (and its standard deviation)
as a measure of tracking quality. TRW-S optimizer is chosen
since it represents a state-of-the-art algorithm computing the
optimal labeling for our energy term (recall that our MRF is
a chain). On the approximation side, we chose FastPD and
QPBO because of their speed and good optimality properties.

Table III shows that the use of FastPD combined with
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sequence name frames spacing deformation curve length

mean max mean max

cardiac 01 55 0.184 17 28 413 438
cardiac 02 72 0.184 13 25 440 457
cardiac 03 30 0.184 16 43 505 543
cardiac 04 10 0.278 20 51 432 437
cardiac 05 11 0.278 13 49 645 665
abdominal 01 143 0.432 8 20 170 175
abdominal 02 228 0.308 8 19 78 83

TABLE IV
SEQUENCE PROPERTIES. THE PIXEL SPACING IS GIVEN IN mm AND THE

DEFORMATION AND LENGTH PARAMETERS ARE DENOTED IN pixels.

category parameter

name value

spline modeling degree 3
max. control points 12

discretization search steps 40 (321 labels)
search range 15 (mm)

regularization λ 0.7

TABLE V
TRACKING PARAMETERS.

sparse label sets is extremely efficient and reasonable tracking
accuracy can be achieved. Furthermore, it shows that QPBO
achieves tracking results which are even closer to the optimal
ones while introducing a minor runtime penalty. The difference
between sparse and dense label sets is quite small regarding
the tracking error while in case of sparse sets we achieve
near real-time performance in all experiments. As expected,
TRW-S gives the better results in terms of accuracy but it is
not suitable for real-time applications. In our previous work
(Heibel et al., 2009) these experiments lead us to choosing
FastPD as our optimizer which we revise in this work because
of the improved stability of QPBO.

D. Experiments on clinical data

In the final experiment we evaluate our tracking algorithm
on 17 hand-labeled clinical sequences out of which 5 were
acquired during cardiac (diagnostic catheterizations) and 2
during abdominal (transarterial chemoembolization; TACE)
interventions with an AXIOM-Artis 3 system at a cine rate of
15 frames per second. The remaining 10 sequences were ac-
quired during a cardiac angioplasty. The challenging sequences
contain an overall of more than 2500 frames and deformations
of up to 50 pixels. More detailed properties of the individual
sequences can be found in Table IV. The first 5 cardiac data
sets were made available to us by the authors Wang et al.
(2009) and each of the data sets did not only contain image
data but also ground-truth annotations as well as the tracking
results of the author’s algorithm. The abdominal sequences
were provided by our clinical partners; they were acquired
during TACE interventions and as the cardiac sequences, hand-
labeled by an expert. The remaining cardiac sequences were
provided by the authors of Honnorat et al. (2010).

3Siemens Healthcare, Forchheim, Germany
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Fig. 5. The plot shows the evaluation of the regularization parameter λ
and its dependency on the mean of false and missed tracking rates. The
plot indicates that a wide variety of parameter choices is possible without
dramatically hampering the tracking quality.

We use a single set of parameters (see Table V) throughout
all experiments. The regularization weight is set to λ = 0.7
though Figure 5 indicates that other choices are possible
without severely decreasing the algorithm’s performance. It
should be noted here, that Figure 5 shows a mixture of false
and mixed tracking rates because it is desired to minimize
both values at the same time instead of a single performance
measure. The figure shows the results of an experiment in
which we evaluated the tracking error (the mean of false and
missed rates) for 100 different parameters λ and for each
medical sequence.

The labeling is configured with a search range of 15 mm
and 40 search steps in each direction resulting in an overall of
321 labels per node. The sparse labeling is chosen accordingly
to Section V-C and following the results of Section V-B the
product model is used as our influence function.

Regarding the algorithm run-time, it is useful to split the
overall processing into two steps. The first step, before the
optimization is carried out, is the computation of the feature
image I and the second step is the actual optimization process.
We have measured a mean processing time of about 33.52 ms
(σ = 13.06 ms) for the computation of the feature image I
and a mean optimization time of 26.22 ms (σ = 9.60 ms). This
results in an overall of about 60 ms processing time. With these
processing rates this is to the best of our knowledge the first
algorithm which is capable of processing fluoroscopic images
at the same rate as they are acquired by the imaging system.

A summary of the comparison between the two methods
can be found in Table VI. The experiments show that our
method is performing on average equally well as compared
to the robust guide-wire tracking (RGWT) by Wang et al.
(2009) while it is not relying on any learning. Visual results
of the tracking performance are depicted in Figure 6. The
results show that the tracking may suffer from the introduction
of local loops and foldings in areas of high curvature but it
also shows corresponding images from the same sequences in
which the algorithm recovered from such intermediate errors.
The first row of Figure 6 shows in particular the robustness to
poor features where the algorithm is capable of maintaining
correct curve shapes despite the lack of image information.
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sequence name mean (px) standard deviation (px) median (px) false (%) missed (%)

MRF-T RGWT MRF-T RGWT MRF-T RGWT MRF-T RGWT MRF-T RGWT

cardiac 01 1.51 1.67 1.87 1.64 0.98 1.17 10.78 12.21 15.62 13.51
cardiac 02 1.52 1.57 2.72 1.81 0.71 0.89 7.15 11.37 7.65 9.94
cardiac 03 1.49 1.29 2.41 1.51 0.69 0.73 8.86 9.19 9.88 11.16
cardiac 04 0.85 0.82 0.92 0.73 0.61 0.69 3.11 1.44 2.00 0.61
cardiac 05 1.14 1.33 1.32 1.49 0.69 0.82 9.10 10.30 8.80 11.85

abdominal 01 0.81 n/a 0.63 n/a 0.68 n/a 1.87 n/a 4.13 n/a
abdominal 02 1.19 n/a 1.37 n/a 0.78 n/a 6.15 n/a 18.75 n/a

sequence 01 3.16 n/a 6.07 n/a 1.17 n/a 7.00 n/a 8.40 n/a
sequence 02 3.90 n/a 9.23 n/a 1.22 n/a 5.60 n/a 12.40 n/a
sequence 03 1.40 n/a 2.90 n/a 0.78 n/a 0.67 n/a 0.60 n/a
sequence 04 1.19 n/a 2.32 n/a 0.89 n/a 1.80 n/a 0.00 n/a
sequence 05 1.34 n/a 0.40 n/a 1.31 n/a 0.00 n/a 0.80 n/a
sequence 06 1.37 n/a 1.69 n/a 1.03 n/a 1.00 n/a 1.00 n/a
sequence 07 1.27 n/a 0.28 n/a 1.33 n/a 0.20 n/a 0.20 n/a
sequence 08 1.19 n/a 0.37 n/a 1.20 n/a 0.00 n/a 0.20 n/a
sequence 09 1.46 n/a 2.74 n/a 1.01 n/a 0.60 n/a 2.60 n/a
sequence 10 1.48 n/a 2.80 n/a 0.84 n/a 7.00 n/a 6.80 n/a

TABLE VI
EXPERIMENTAL VALIDATION OF THE PROPOSED METHOD (MRF-T) ON CLINICAL DATA. WHERE THE DATA WAS AVAILABLE, THE METHOD HAS
BEEN COMPARED TO THE ROBUST GUIDE-WIRE TRACKING (RGWT) METHOD OF WANG ET AL. (2009). TRACKING ERRORS ARE REPRESENTED

IN PIXELS (PX) AND THE FALSE AND MISSED RATES IN PERCENT OF THE CURVE LENGTH. THE THRESHOLD FOR COMPUTING FALSE AND
MISSED RATES WAS SET TO 3 PIXELS.

VI. DISCUSSION

In catheterization procedures, the tip of the guide-wire is
the actual object of interest for navigating the catheter to the
intervention situs. Its detection is therefore an important task
in order to provide computer aided navigation. The guide-wire
tip is usually detected by explicitly searching for end-points of
a curvilinear object starting from only a segment of the curve
(Baert et al., 2003b). In this paper we propose a novel method
which allows to track curve segments which is the prerequisite
for the actual tip detection.

The proposed approach makes use of efficient discrete,
multi-directional search which is robust to large deformations.
No laborious off-line training stage is required opposed to
alternative methods based on learning. Our method achieves
highly accurate results in a single step and is computationally
more efficient allowing near real-time performance compared
to stratified, multi-stage methods.

The evaluation of our experimental results has shown that
the underlying feature images are some time causing a perfor-
mance degradation of the tracking. The problem is that in the
absence of the actual guide-wire the tracked curves are being
attracted by the surrounding edges (organ interfaces, bony
structures). This is usually caused by poor visibility of the
guide-wire in the X-Ray images and typically spans multiple
successive frames of angiographic sequences. Overcoming this
issue is difficult and a possibility to further improve the
tracking algorithm is the incorporation of heuristics which
allow to detect such cases. One approach might be to try to
retain the shape of the guide-wire as observed the last time
when it was completely visible. This issue is hampering all
published methods which deal with guide-wire tracking during
these sequences of poor visibility and thus requires further
investigation in the future.

With the currently used regularization approach it may
still happen that loops (see Figure 6(k)) appear in a few

intermediate frames. Another issue is the rare occurrence of
curve folding (see Figure 6(h)) which is not averted by our
regularization strategy. Problem specific regularization priors
could be introduced to prevent these issues. Similarly to the
proposal for dealing with poor visibility the penalization of
shape changes between frames could help to improve these
cases. In contrast to the penalization of length changes which
is carried out in our work against the initial curve Cinit it
is not immediately clear against which curve shape changes
should be penalized. Using the curve observed in the previous
frame could lead to an error accumulation and is in particular
problematic once the curve actually ends up in a wrong
configuration. The alternative of using the initial curve is again
problematic when it comes to shape penalizations because the
guide-wire might actually be changing its shape during the
intervention. Again, this problem offers research opportunities
for future work.
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