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Abstract. We present our 11-layers deep, double-pathway, 3D Convo-
lutional Neural Network, developed for the segmentation of brain lesions.
The developed system segments pathology voxel-wise after processing a
corresponding multi-modal 3D patch at multiple scales. We demonstrate
that it is possible to train such a deep and wide 3D CNN on a small
dataset of 28 cases. Our network yields promising results on the task of
segmenting ischemic stroke lesions, accomplishing a mean Dice of 64%
(66% after postprocessing) on the ISLES 2015 training dataset, rank-
ing among the top entries. Regardless its size, our network is capable of
processing a 3D brain volume in 3 minutes, making it applicable to the
automated analysis of larger study cohorts.

1 Introduction

The blockage of an artery during a stroke may disrupt the supply of oxygen and
other required substances to brain regions, leading to neuronal death. If the blood
flow is restored quickly enough, parts of the affected brain tissue may survive
and gradually recover [1]. Automatic detection of the affected but salvageable
penumbral tissue can accelerate the decision making and treatment of the patient
in the acute clinical setting, increasing the likelihood of a more favourable out-
come. Development of robust and accurate segmentation techniques could also
facilitate the longitudinal monitoring and analysis of stroke lesions which evolve
over time [2] and enable larger-scale studies that can further our understanding
of the relations between tissue damage and functional deficits.

Following their success on challenging tasks in the field of Computer Vision
[3,4,5], Convolutional Neural Networks (CNNs) have been subsequently applied
successfully on a variety of biomedical segmentation problems. Most developed
approaches relied on the adaptation of 2D CNNs for processing 3D volumes
[6,7,8], with difficulties being reported when training of 3D CNNs was attempted.
While these architectures of 2D networks might be successful in some problems,
they are suboptimal in their use of available 3D information. The first pure 3D
CNN reviewed was presented in [9], where it was employed for brain tumour

? The first author was funded by an Imperial College Phd Scholarship.
Email correspondence to: konstantinos.kamnitsas12@imperial.ac.uk



2 Kamnitsas et al.

segmentation. Regardless of its small size, the system demonstrated excellent
performance and formed the starting point for our approach.

2 Method

Fig. 1: The architecture of one of our earlier networks. Number and dimensions
of the feature maps (FMs) are depicted in the format (Number ×Dimension).
Please consult the text for more details on our latest 11-layer network. Multi-
modal input is not depicted, in order to avoid cluttering the figure.

2.1 Network Architecture

Although inherently classifiers, CNNs can tackle segmentation tasks by casting
them to voxel-wise classification. The network processes a 3D patch around
each voxel of an image. It is trained to predict whether the central voxel is
pathology or normal brain tissue, depending on the content of the surrounding
3D patch. During training, the parameters of the kernels are optimized using
gradient descent, with the target of minimizing the error between the predictions
and the true labels.

One of the limitations in the above setting is that the segmentation of each
voxel is performed solely by processing the contents of a small patch around it.
It is intuitive that greater context is likely to lead to better results. However, a
straight-forward increase in the size of the 3D input patch would prohibitively
increase the memory requirement and computational burden. Our proposed so-
lution is to perform parallel processing of the image at multiple scales. Our net-
work architecture consists of two parallel convolutional pathways, where both
have receptive fields of the same size. The input to the second pathway, however,
is a patch extracted from a subsampled-version of an image, thus allowing it to
efficiently process greater area around each voxel. This architectural design is
presented in figure 1.

Another important feature of our architecture is its full convolutional nature,
which allows its efficient application on larger parts of the image. By providing as
input segments of an image larger than the receptive field of the final layer’s neu-
rons, the network can efficiently process the larger input and provide as output
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predictions for multiple neighbouring voxels. Following [9,5], we also exploit this
feature during training, constructing our training batches by extracting image
segments of size larger than the network’s receptive field.

An earlier version of our system is depicted in figure 1. Our final network
resulted from the replacement of each convolutional layer with a kernel of size
53 with two layers with 33 kernels and the addition of another layer before the
final classification. The final 11-layers deep network exhibited significantly more
accurate segmentation performance. The network is regularised using Dropout
[10] at the 9th and 10th layers with a rate of 50%, on top of L1 (10−6) and
L2 (10−4) regularisation. Initial learning rate was set at 0.01 and was gradually
reduced during training, along with constant momentum equal to 0.6. ReLu ac-
tivation functions [11] and batch-normalisation [4] were used for the acceleration
of convergence that they provide. The training time required for convergence of
the final system is roughly one day using a NVIDIA GTX Titan Black GPU.
Segmentation of a 3D scan of a brain with four modalities requires 3 minutes.

2.2 Data Preprocessing, Augmentation and Postprocessing

The modalities of each patient were individually normalised to have zero mean
and unary standard deviation, as preliminary experiments showed the networks
to behave better on input in this intensity range. In order to regularise the
network, we augment the dataset by reflecting the images with respect to the
sagittal axes. This processing, along with the subsampling of the images, is per-
formed in parallel with training, when the image segments for the next training
iteration are extracted, thus effectively adds no computational time. The output
of the network was postprocessed by our version of the CRF presented in [12],
extended in order to be able to process 3D biomedical images.

3 Evaluation

The system was evaluated on the training dataset of the ISLES 2015 Challenge.
Four modalities (Flair, DWI, T1, T2) were available for 28 cases of patients with
ischemic stroke lesions. We performed 5-fold validation for this evaluation. Our
system achieved a mean Dice coefficient of 66%, with our network alone achieving
64% and an additional increase of 2% achieved through post-processing using
the CRF. In figure 2 we present our results for each case and the current results
on the evaluation platform, where we rank among the top entries.

4 Conclusion and Discussion

Our architecture exhibits promising performance, with capabilities for delicate
segmentations. Difficulties are observed in the segmentation of lesions of partic-
ularly small size. The separation of lesions into different categories, for instance
according to their size, and their treatment by separate classifiers could simplify
the task for each learner and help alleviating the problem.
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Fig. 2: (a) Top: Volume of lesions for each case according to manual (black)
and our system’s segmentation (red). Bottom: DICE coefficient for our system’s
segmentation for each case, along with mean (continuous) and median (dashed)
values. (b) Online evaluation on training data, with our system ranking 1st and
2nd with respect to mean ASSD and Dice metrics at the time of writing.
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