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Abstract. This paper proposes a general method for establishing pair-
wise correspondences, which is a fundamental problem in image analysis.
The method consists of over-segmenting a pair of images into supervox-
els. A forest classifier is then trained on one of the images, the source, by
using supervoxel indices as voxelwise class labels. Applying the forest on
the other image, the target, yields a supervoxel labelling which is then
regularized using majority voting within the boundaries of the target’s
supervoxels. This yields semi-dense correspondences in a fully automatic,
efficient and robust manner. The advantage of our approach is that no
prior information or manual annotations are required, making it suitable
as a general initialisation component for various medical imaging tasks
that require coarse correspondences, such as, atlas/patch-based segmen-
tation, registration, and atlas construction. Our approach is evaluated
on a set of 150 abdominal CT images. In this dataset we use manual
organ segmentations for quantitative evaluation. In particular, the qual-
ity of the correspondences is determined in a label propagation setting.
Comparison to other state-of-the-art methods demonstrate the potential
of supervoxel classification forests for estimating image correspondences.

1 Introduction

Establishing correspondences between images is a fundamental and important
problem in many medical image analysis tasks. To this end, dedicated image
registration techniques have been developed and successfully employed in fully
automated analysis pipelines [15]. Many of these techniques work best when
applied on particular types of images, such as brain scans, where simple ini-
tialisation strategies work well. In general settings, however, the images to be
registered might capture very different fields of view, as it is often the case in
pre- and post-operative abdominal scans. In such settings, establishing an initial
alignment can be quite challenging if no prior information is available. It can be
beneficial to utilize anatomy recognition and landmark detection methods which



provide spatial priors for registration [7]. However, this requires an annotated
image database for training. Obtaining a large number of manually annotated
images can be tedious, costly and time-consuming.

Contribution: We propose a general method for establishing initial pairwise
correspondences which does not require any prior information or manual annota-
tions. We employ classification forests [2], but in contrast to previous work class
labels for training are generated automatically. Our method consists of over-
segmenting a pair of images into supervoxels. We then train a forest classifier
on one of the images – the source image – by using its supervoxels indices as
voxelwise class labels. Applying the forest on the other image – the target image
– yields a supervoxel label prediction for each of its voxels. Majority voting is
then carried out within the supervoxels of the target image where each voxel
casts a vote as to what the final supervoxel label should be. The final labelling
yields correspondences between the supervoxels of the two images. Supervoxels
are an ideal representation for semi-densely distributed correspondences relaxing
the one-to-one matching assumption between images. Establishing supervoxel
correspondences between two images solves the initialization problem for many
image analysis tasks such as atlas/patch-based segmentation [8, 4], registration,
and atlas construction.

Related Work: Random forests [2], as a supervised machine learning tech-
nique, have found many successful applications in medical image analysis [6, 10,
5, 14]; this is mainly due to their accuracy, robustness, and scalability. They rely
on the availability of labelled images which is contrast to the approach taken here
where labels are generated automatically. While traditionally, forests are trained
on a database containing many images, recently, the idea of encoding a single
labelled image (or “atlas”) as a forest [14] has been proposed in the context of
multi-atlas label propagation. This has inspired our idea of using the atlas-forest
approach for learning image correspondences from a single source image, which
is labelled automatically via a supervoxelisation. Supervoxels – and their 2D
counterpart, superpixels – have found many applications in computer vision [12,
9]. They allow the grouping of voxels into locally consistent regions that have
similar properties thereby reducing redundancy and computational complexity.
Supervoxels are mainly used within segmentation pipelines. We are not aware of
previous work that has used supervoxels as label entities in classification forests,
in particular, with the aim of establishing image correspondences.

2 Methods

2.1 Problem Formulation

The aim of our method is to estimate correspondences between a set of im-
age regions, i.e. supervoxels. Let Ii be an image that is over-segmented into an
indexed set SVi = (svik)k∈Ci of distinct supervoxels svik. The image therefore
consists of |SVi| supervoxels with the index set Ci = {1, ..., |SVi|} denoting the

distinct labels of the supervoxels. Each supervoxel svik = {vi
l}

|svi
k|

1 in turn is a



set of voxels vi
l . With N i representing the total number of voxels in the image,

we would have
∑

k |svik| = N i.
Establishing correspondences from an image Ii to an image Ij consists of find-

ing a mapping function gi that maps each supervoxel svjk ∈ SV
j to a value/label

in the index set Ci so that ∀k ∈ Cj ,∃c ∈ Ci | gi(svjk) = c. We propose to use
random classification forests to learn the mapping function gi.

2.2 Random Forests

First we give a brief overview of random forests [2] when applied to a single
3D image. An excellent in depth review can be found at [5]. Random forests
are a collection of binary decision trees. They involve two stages: training and
testing. The data used for training the forest consists of all the voxels from a
single image. We denote the training set as S = {vk, ck}N1 with ck ∈ C being
the label of voxel vk. A tree consists of a set of nodes such that each node can
either be a leaf node or has two child nodes.

Each mth node has a binary weak classifier f(v, θ) = [φm(v) − τm] with
θm = {φm, τm}; φm(v) is an appearance feature and τm is a threshold. The
weak classifier serves as a split function that determines whether a given sample
should go down the left or the right child node. For a set of samples Sm arriving
at the mth node, different θm values yield different disjoint subsets Sm

L and Sm
R .

Training a tree involves finding at each mth node the optimal θ̂m, via max-
imisation of an objective function h(Sm, Sm

L , S
m
R , θ

m). Each node has access to a
limited number nf of randomly generated values for θm. The randomness ensures
that each tree ends up being unique. Starting from the root node, the samples
are recursively split up into two subsets based on the optimal split, with a subset
going down each child node. Once a stopping criteria is met – such as maximal
depth or minimal sample count – the node becomes a leaf and the distribution
of samples that reached it is stored as a posterior probability pt(c|v).

When testing on a new target image, its voxels are passed down the learnt
tree going left or right, depending on their response to the split function found
during training, until reaching a leaf node (Fig. 1). The outputs from all the T
trees in the forest are then combined by averaging: p(c|v) = 1

T

∑
t pt(c|v). The

final voxel label is obtained by selecting the maximum ĉ = arg maxc p(c|v) .
For a classification forest, the objective function h at a node with samples

S is the information gain H(S)−
∑

i={L,R}

|Si|
|S| H(Si), where H(S) is the Shannon

entropy −
∑
c∈C

p(c) log p(c) and p(c) is the normalised empirical histogram of the

labels of the training samples in S.
A regression forest, unlike a classification forest, maps an input into a con-

tinuous output. To use a regression forest to output correspondences, each voxel
v has its position assigned as its label c = (x, y, z). The objective function used
in this case [3] is the error of the fit

∑
v∈S

(c − c̄)2 −
∑

i={L,R}

∑
v∈Si

(c − c̄)2 with c̄

being the mean position vector for all the points at a node with samples S.



Fig. 1. An overview of random forests. All voxels of a single image are fully used to
train each tree. During testing, a voxel starts at the root node and depending on its
response to the binary split function at each node (circle), it is sent left or right until it
reaches a leaf node (square). The posterior probability distributions from the reached
leaf nodes are then averaged to obtain a final label posterior distribution.

Appearance Features Similarly to [14], we use a set of context appearance
features with offsets up to 200mm; large offsets have been found useful [6] for
discriminating between organs. The features used consist of intensities and dif-
ferences between intensities in two different regions. The feature function φ(v)
mentioned in Sec. 2.2 is characterised by: an offset ∆x ∈ R3 and a 3D box Bs(x)
centred at x with a size parameter s ∈ R3. For a voxel with v ∈ R3 representing
its position, φ(v) can be any of the following:

1. Mean intensity of local box: 〈I(Bs(v))〉
2. Difference of intensity of local point and mean intensity of offset box: I(v)−
〈I(Bs(v +∆x))〉

3. Difference of mean intensity of local box and mean intensity of offset box:
〈I(Bs(v))〉 − 〈I(Bs(v +∆x))〉

4. Difference of a pair of offset box means 〈I(Bs(v1+∆x1))〉−〈I(Br(v2+∆x2))〉

Once the response φ(v) has been evaluated for all samples at a given node, the
optimal value for the threshold τ is obtained by uniformly dividing the response
space into nthresholds and choosing the value the maximises the information gain.

2.3 Supervoxel Classification Forest (SVF)

In our proposed method we encode a single image into a classification forest as
in [14]; however, instead of using organ labels, the label of each voxel is the index
of the supervoxel it belongs to. Random forests can easily handle a large number
of labels making them suitable for this task.

To generate supervoxels, we use the efficient SLIC superpixel [1] algorithm.
It performs k-means clustering using intensities balanced with the euclidean dis-
tance as a distance measure; it takes as input the size of the desired supervoxels
and a compactness parameter that enforces regularity in the supervoxel shape.
The output is a set of approximately regularly spaced supervoxels that tend to
follow intensity boundaries.



Fig. 2. : Proposed method for establishing correspondences at a supervoxel level. First,
the training image is segmented into supervoxels (randomly coloured) which are then
used as labels to train a classification forest using all the voxels in the image. Applying
the forest on a test image yields a supervoxel label prediction for each voxel that does
not necessarily follow the test image’s supervoxel boundaries. As a final step, the voxels
within each supervoxel in the test image cast votes as to what its label should be. Same
colour indicates a match between supervoxels in the training and the test image.

Given the training image Ii and its set of labels |Ci| (or in this case supervoxel
indices), a training set is constructed using all the voxels in the image {vi

k, ck}N1
with ck ∈ Ci and we use it to train an SVF as described in Sec. 2.2.

When applying the forest on a test image, the label predictions from the
forest tend to be noisy (Fig. 2); therefore, we perform as a final step a majority
voting within each supervoxel of the test image based on the predicted labels of
their voxels. Each supervoxel svjk in the test image Ij receives votes from each
one of its voxels as to what its label from Ci should be. The final supervoxel
label of svjk is obtained by selecting the label with the maximum votes cjk =
arg maxc∈Ci

∑
v∈svj

k
p(c|v).

3 Experiments and Results

Ground truth data for one-to-one correspondences between images is hard to
obtain. Therefore, to quantitatively evaluate our method, we test it in a simple
multi-atlas label propagation (MALP) setting. We do this as MALP is an ap-
plication that inherently requires establishing correspondences between images
in order to propagate labels. Most state-of-the-art methods in MALP such as in
[13, 11] use affine registration as a first step to give an initial set of dense cor-
respondences between the atlases and the target image before proceeding with
a more sophisticated label propagation scheme. Although affine registration is
less accurate than doing non-rigid registration, it is used because it is more ef-
ficient. As random forests are quite efficient during test time, we compare our
method against affine registration to evaluate the accuracy of the initial set of



correspondences. Additionally we compare our method against a conventional
organ label classification forest (LF) and a coordinate regression forest (RegF).

We use a dataset of 150 abdominal CT scans acquired from different subjects.
The 3D scans have an in-plane resolution of 512 × 512 with a number of slices
between 238 and 1061. Voxel sizes vary from 0.55 to 0.82 with a slice spacing
ranging from 0.4 to 0.8 mm. Manual organ segmentations of the liver, spleen,
kidneys, and pancreas are provided by clinical experts.

Given a test image that we would like to segment, we treat the remaining
149 images as atlases. The MALP setting would then be as follows:

– Select a subset of the most similar atlases as measured globally by SSD
similarity between down-sampled versions of the atlases and the test image.

– The next step is obtaining a label prediction Lpa from each atlas a. For LF,
we simply apply the atlas forest on the test image to obtain Lpa directly. For
affine registration, all the images are affinely aligned to a template space.
The labels from the atlas are then transferred to the test image based on the
one-to-one voxel correspondences. For RegF, applying the atlas regression
forest yields correspondences between the coordinates of the atlas and the
test image. The labels are then transferred from the atlas to the test image.
Lastly, applying an atlas SVF on the test image yields correspondences
between the atlas and the test image on a supervoxel level. Each supervoxel
from the atlas has an organ label which is obtained via majority voting from
the organ labels of its voxels. The supervoxel-level organ labels are then
transferred from the atlas to the supervoxels of the test image.

– The final labelling Lp of the test image is then obtained by fusing Lpa from
all the atlases via a voxel-wise majority vote.

Fig. 3. Dice overlap using the 20 closests atlases to perform MALP. Results for affine
registration (Affine), SVF, RegF, RegF svpre, RegF svpost, LF, LF svpre, and LF
svpost. We see that SVF scores a higher dice overlap, especially for the kidneys and
spleen. We also note that using supervoxels as a post-processing step with RegF and
LF does not improve the prediction result.



To test whether using supervoxels can have an influence on the labelling
obtained from RegFs and LFs, we apply a post-processing step – by assigning to
each supervoxel the most frequent label of its voxels – either on the predictions
Lpa of each atlas before fusing (svpre) or directly on Lp after the fusion (svpost).
We use 2000 supervoxels. In addition, for SVFs, we test with with 500, 1000,
and 2000 supervoxels on average per image. Fig. 3 shows the Dice overlap from
the different methods using the closest 20 atlases.

All the forests (LF, SVF, RegF) are trained with the same parameters: 5
trees –as not much difference has been observed from using 1 to 5 trees [14]–,
maximum depth 32, minimum samples 4, nthresholds = 15, nf = 500, and with
the images down-sampled to a 2× 2× 2mm3 spacing. With an implementation
in C++, generating supervoxels on full resolution images takes around 30-50
seconds per image on a single machine with core i7 @ 3.40 GHz with 16 GB
memory. For SVFs, training on a 160 × 160 × 93 volume takes ∼ 4 mins/tree
while testing takes ∼ 4s with a pre-processing time of ∼ 10s.

4 Discussion and Conclusion

In this paper we propose a method for estimating correspondences between im-
ages on a supervoxel level using classification forests. The advantage of our ap-
proach is that it does not rely on the availability of prior organ annotations.
Training a random forest using automatically generated supervoxels as class
labels allows training on unlabelled images. Qualitative evaluation of the esti-
mated correspondences in a simple multi-atlas propagation setting demonstrate
the potential of using SVFs for estimating correspondences. We do not apply
any further post-processing to improve the segmentation, such as graph-cuts,
which is what is typically done in some state-of-the-art methods for segmenting
abdominal datasets [13, 11]. Random forests are extremely efficient during test
time making them an attractive option to use for estimating correspondences in
large datasets.

In addition, results seem to indicate that using an SVF to propagate labels
from an atlas to a target image yields a higher prediction accuracy than using
traditional random forests, such as a LF or a RegF. One possible reason might
be that LFs have difficulty learning features to distinguish between one organ
vs another, if an organ, for example the liver, covers a wider span of contextual
appearance features due its size. Whereas RegFs ignore organ boundaries and
will mix voxels from organs with those of the background. On the other hand,
SVFs offer a nice balance between locality and tissue type consistency via the
use of supervoxels.

The current supervoxel segmentation is not optimal when using a small num-
ber of supervoxels that do not adhere perfectly to the boundaries of the underly-
ing ground truth segmentation. This is especially true for the pancreas. Comput-
ing Dice overlaps between the ground truth organ labels and the their supervox-
elised version –obtained by assigning to each supervoxel the majority vote of the
ground truth label of its voxels– yields for 150 images: pancreas 0.641 ± 0.138,



kidneys 0.927± 0.061, liver 0.935± 0.022, and spleen 0.908± 0.054. Future work
would include investigating more appropriate supervoxel segmentation and hi-
erarchical representations. Moreover, it would be interesting to exploit mutual
correspondences as it is possible to obtain them by training independently on
both images, then testing on each other and keeping only the mutual corre-
spondences. For purposes of evaluation such an approach would require a more
sophisticated label propagation scheme which we do not adopt here.
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