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Abstract. This article presents an efficient method for weakly-supervised
organ segmentation. It consists in over-segmenting the images into object-
like supervoxels. A single joint forest classifier is then trained on all the
images, where (a) the supervoxel indices are used as labels for the vox-
els, (b) a joint node optimisation is done using training samples from
all the images, and (c) in each leaf node, a distinct posterior distribu-
tion is stored per image. The result is a forest with a shared structure
that efficiently encodes all the images in the dataset. The forest can be
applied once on a given source image to obtain supervoxel label pre-
dictions for its voxels from all the other target images in the dataset
by simply looking up the target’s distribution in the leaf nodes. The
output is then regularised using majority voting within the boundaries
of the source’s supervoxels. This yields sparse correspondences on an
over-segmentation-based level in an unsupervised, efficient, and robust
manner. Weak annotations can then be propagated to other images, ex-
tending the labelled set and allowing an organ label classification forest
to be trained. We demonstrate the effectiveness of our approach on a
dataset of 150 abdominal CT images where, starting from a small set of
10 images with scribbles, we perform weakly-supervised image segmen-
tation of the kidneys, liver and spleen. Promising results are obtained.

1 Introduction

Large datasets of medical images are increasingly becoming available; however,
only a small subset of images tend to be fully labelled due to the time-consuming
task of providing manual segmentations. This is one of the main hurdles for
conducting large scale medical image analysis. Recently, a method [11, 3] using
random classification forests to estimate correspondences between pairs of im-
ages at the level of compact supervoxels has been proposed. Given a pair of
images, the method [11] consists in training a forest per image, applying it on
the other image, and then extracting mutual correspondences. While the method
is efficient if the application is restricted to a pair of images, it does not scale



well when applied to a large dataset of images: obtaining correspondences be-
tween images in a dataset of n images would entail training n distinct forests
and testing n(n − 1) forests. In this paper we similarly use random forests to
estimate correspondences; however, we make modifications to make it applicable
to a large dataset: (a) we use object-sized supervoxels instead of small compact
supervoxels, (b) we train one shared forest for all the images instead of one forest
per image. We do this by allowing the trees to share the same structure by per-
forming joint optimisation at the nodes. All the images are thus encoded by the
same forest structure, where each leaf node stores a distinct supervoxel label dis-
tribution per image. This method makes it possible to compute correspondences
efficiently between all the image in a large dataset on a supervoxel-level by a
simple look up process in the leaf nodes. The obtained correspondences can then
be used to propagate semantic labels. We investigate using the proposed method
in a weakly-supervised medical image segmentation setting on an abdominal CT
dataset consisting of 150 images, starting only from 10 weakly-labelled images.

Related Work: In the computer vision community, there has been consider-
able research done in the domain of weakly supervised image segmentation [10,
6, 2], segmentation propagation [13, 7], and co-segmentation [17], where the min-
imal assumption is that a common object is present in all of the images. Other
form of weak annotations could be included such as bounding boxes, scribbles
or tags indicating the presence of some object of interest. The main motivation
behind these methods is the idea that a large dataset containing similar objects
is bound to have repeating patterns and shapes, so they could potentially be
exploited to discover and jointly segment the common objects. One issue when
attempting to apply some of the methods to medical images is scalability, where
the main bottleneck is obtaining correspondences between the images. Some
state-of-the-art methods [13] rely on dense pixel-wise correspondences, which is
infeasible to apply to a large dataset of 3D medical images. In an attempt to
overcome such issues, other methods advocate using superpixels in an image as
a building block in unsupervised and weakly supervised segmentation [14, 18,
7], where feature descriptors are typically computed on a pixel-level and then
aggregated within superpixels; however, descriptor choice is non-trivial and can
still be computationally costly for 3D images depending on the type of features.

To investigate whether weak supervised segmentation can be performed ef-
ficiently on a large 3D medical dataset, we make use of random forests, which
are one of the most popular supervised machine learning algorithms that have
been used in medical image analysis [5, 12, 4, 20]. Their popularity comes from
their flexibility, efficiency, and scalability. The random forest framework makes
it possible to do feature selection from a large pool of features. Additionally,
random forest can scale up efficiently to large data, like 3D images, especially
when simple cuboid feature, coupled with integral images, are used. Due to the
nature of medical images, where anatomical structures follow certain patterns,
context around voxels plays a role in improving classification [19]. Random forest
with offset cuboid features can efficiently exploit context in an image to improve
the prediction accuracy.



2 Method

The problem is similar to one in [11], except that instead of pairs of images,
we extend it to multiple images. Given a set of images I = {Ii}N1 and their
set of associated supervoxels R = {Rik}, k = 1 . . . |Ci|, the aim is to establish
correspondences between supervoxels across all images. We note Ci = 1, . . . , |Ci|
as the index set of the supervoxels of image Ii.

2.1 Object-sized Supervoxels

We over-segment each image into a set of supervoxels using a 3D extension of the
efficient graph-based segmentation algorithm [8]; it takes in three parameters: k,
min size, and σ (Gaussian smoothing). For more details about the parameters,
please refer to [8]. The number of supervoxels generated depends on the image.
This algorithm allows obtaining segments that potentially represent different
anatomical structures and organs; it has been used as a component of region
proposal algorithms [16]. However, it is not possible to accurately segment each
organ such that each organ is contained in one supervoxel. Over-segmentation
and under-segmentation still occurs. Given two neighbouring voxels p ad q, we
modify the weighting term used in the algorithm to

w(p, q) =
|I(p)− I(q)|

max(10, Sβ(p))
×
√
G(p)×G(q), (1)

where G(p) is the gradient magnitude obtained using the Sobel filter and
helps in reducing the sensitivity to noise. Sβ(p) is a Gaussian filtered image, with
smoothing parameter β, of the average of the absolute value of the gradient in the
3 directions; this term provides adaptive contrast normalisation. The proposed
modification results in better looking supervoxels and reduces the impact of noise
in CT images. In addition, during the post-processing step, we add an additional
constraint where we only merge a pair of supervoxels if any of their sizes is less
than min size and their edge weight is less than m. Any remaining supervoxels
that are smaller than min size are excluded from the final output. Examples
are shown in the Fig. 1 as well as in the supplementary material.

2.2 Joint Supervoxel Random Classification Forest

Due to lack of space, we directly describe the random forest framework as applied
to our problem. A more extensive overview can be found at [4].

We train a single forest on all images simultaneously such that all the images
are encoded in that single forest. Fig. 1 shows an overview of the proposed
method, where only one tree is shown.
Node Optimisation: At each node, we perform joint optimisation of the feature
selection, where the feature selected at each node is the one that maximises the
sum of the total information gain from all the images.

IG(S) =
∑
i

IG(Si) (2)



Fig. 1. An overview of the joint supervoxel forest. For illustration, only one tree is
shown. Voxels from all the images in the dataset are used to train each tree. Each
voxel has its supervoxel index as a label. At the nodes, we perform joint optimisation
by maximising the sum of the information gain from all the images. At the leaf nodes,
we store a distribution per image of the supervoxel indices, such that there could be up
to N distributions stored at each leaf node. During testing, a voxel starts at the root
node, and depending on its response to the binary split function at each node (circle),
it is sent left or right until it reaches a leaf node (square). Once a voxel from a given
image reaches a leaf node, it is possible to look up simultaneously its correspondences
to all the other images.

where IG(Si) is the information gain of the ith image with samples Si, and

IG(Si) = H(Si)−
∑

j={L,R}

|Sij |
|Si|

H(Sij) , (3)

where H(S) = −
∑
c∈C

p(c) log p(c) is the Shannon entropy and p(c) is the

normalised empirical histogram of the labels of the training samples in Si.
In addition, we randomly select, with ratio rs, at each node, a subset of the

images to perform node optimisation on. This allows speeding up the training
process and increasing the randomisation between the trees.
Leaf Nodes: At each leaf node, we store the posterior distributions pi(c =
l|v), l ∈ Ci, i = 1 . . . n of the supervoxel labels for each one of the n images.
After training is done, the distributions for the ith image in the leaf nodes are
computed by re-passing down all the image’s voxels. We have found that this
increases the accuracy of the correspondences, as the initial low sampling rate
used during training is not enough to create an accurate distribution.
Appearance Features: Similarly to other methods, we use a set of context
appearance features as they have been found to be quite effective and efficient [4,
9, 20] The features consist of local mean intensities and mean intensity differences
between two different cuboid regions at different offsets, which are efficient to
compute via the use of 3D integral images. The feature generation function
ψ(x) : R3 → R takes as input the position x of the voxel and computes a
feature value based on: a pair of offsets (∆x0, ∆x1) ∈ R3 × R3; a pair of size
parameters (s0, s1) ∈ R3×R3, where a given s characterises the dimensions of a



cuboid centred at position u; Bs(u) is the mean intensity of the voxels within the
cuboid centred at u and of size s; and b ∈ {0, 1} is a binary value that indicates
whether to take the intensity difference between two cuboids or only the value
from a single cuboid. Let κ = {s0, s1, ∆x0, ∆x1, b} denote the set of parameters.
Given some choice of values for κ, the feature response for a voxel at x in image
I is: ψκ(x) = Bs0(x +∆x0) + b×Bs1(x +∆x1).

Once the feature response ψκ(x) has been evaluated for all samples at a given
node m, the optimal value for the threshold τm is obtained via a grid search.
Establishing Correspondences: Once the forest has been trained, correspon-
dences between all the n images in the dataset can be obtained by applying the
forest once on each image. Once a voxel vi from image Ii reaches a leaf node of
a tree t, it gets assigned a set of probabilities {ptj(c = l|vi) | l ∈ Cj}j=1...n for
each one of the other images Ij in the dataset.

Correspondences on the supervoxel level are then obtained via majority vot-
ing, by aggregating all the probabilities of a supervoxel’s voxels from all the trees
and finding the labels that have maximum probabilities. So, given a supervoxel
svik from image Ii, it gets assigned n labels cijk , j = 1 . . . n obtained as follows:

cijk = arg max
c∈Cj

∑
t=1...T

∑
v∈svik

ptj(c|v), (4)

Mutual Correspondences: The correspondences are pruned such that a match
A → B is considered valid only if there is also a match from B → A. This
helps in pruning out false correspondences. For each supervoxel A, we get a
correspondence set MA consisting of all the supervoxels from the other images
that match with it. We expand the set of correspondences to neighbouring ones
such that if we have a mutual correspondence between A ↔ B, and B ↔ C,
then a correspondence between A↔ C is created. In addition, in each set MA,
we prune out the elements that do not mutually match with at least 50% of the
other elements in MA.

2.3 Weakly-supervised Segmentation

Given a dataset where a subset has scribbles on organs, each object-sized su-
pervoxel gets assigned the label of its organ scribble. We then use the obtained
correspondences to propagate the organ labels, resulting in a larger subset of la-
belled images. Some images remain unlabelled, however, if they did not receive
any correspondences. We therefore train another set of forests, one per organ;
however, this time using the organs as labels and using the subset of images that
have obtained a given organ label. Applying each organ label forest on all the
images results in a probabilistic output as to whether a voxel is of a given organ
or background. It is applied on all the images so as to potentially correct the
initial over-segmentation errors and to segment the remaining unlabelled images.
The probabilistic outputs (only probabilities larger than 0.85 are used) are fed
in as the unary cost to graph-cut [1] so as to obtain regularised binary segmenta-
tion outputs. For each image, we then fuse the binary organ segmentations into
a single image. The result is a fully-segmented dataset.



3 Experiments and Results

Dice Overlap Input Ground Truth Segmentation

Fig. 2. Left: Final dice overlap score computed for the 150 images in the dataset at a
2mm spacing. We see that apart from a few outliers cases for the kidneys, liver and
spleen, we get an overall median dice of 0.9 for all three organs. Poor results were
obtained for the pancreas. Right: Image on the top left had organ scribbles (square
dots), which were then assigned to its supervoxels (coloured overlay correspond to the
supervoxels that were assigned an organ label. Full supervoxels are shown in Fig. 1).
The bottom left image was unlabelled and did not have any organ scribbles; however,
it received a liver and spleen label for its supervoxels via the the joint forest corre-
spondences. The right column shows the segmentation output after applying the organ
forest and graph-cut. We see that the bottom image gets segmentations for the kidneys.

Dataset: We use an abdominal CT dataset consisting of 150 distinct sub-
jects, which mostly contains pathological cases. The 3D scans have an in-plane
resolution of 512×512; the number of slices is between 238 and 1061. Voxel sizes
vary from 0.55 to 0.82; slice spacing ranges from 0.4 to 0.8 mm. Manual organ
segmentations of the liver, spleen, kidneys, and pancreas are available. Exper-
imental Set-up: We generate dot scribbles on 10 randomly selected images,
where each image receives 4 dot scribbles, representing the 4 organs. We re-
peat the experiment 10 times. Supervoxels are computed on images re-sampled
to 2mm, with k = 80, minimum size 3000mm3, σ = 0.5mm, β = 5mm, and
m = 50 (all set empirically). For the joint forest, images are re-sampled to 6mm;
we train 20 trees, with a max depth of 14, max offset (in native resolution) of
200mm, cuboid sizes up to 32mm, 15 features/node, a grid search with 10 bins,
min number of samples 5, rs = 50% and a sampling rate of 1%. Node growing
during training stops when the maximum depth is reached, the number of sam-
ples is less than 5, or there is no entropy improvement. For the organ forest,
we use similar parameters, except that we increase the re-sampling to 3mm, the
features/node to 100, and the sampling rate to 5%. Graph-cut is applied using
the pairwise Potts model on images of 2mm spacing, with λ = 4.

Results: From an initial set of 10 weakly organ labelled images (with dot scrib-
bles), the number of images that received an organ supervoxel label via the
correspondences were on average: 101, 110, 144, and 121 for the right kidney,
left kidney, liver, and spleen, respectively. We report the dice overlap of the final



segmentation output with graph-cut applied on all the 150 images. For each im-
age, the dice overlap was averaged from the 10 random runs; box plots of those
averages are reported in Fig. 2, where we see that apart from the pancreas and a
few outlier cases for the kidneys, liver, and spleen, we get good segmentation ac-
curacy with extremely minimal user input. The reader is advised to refer to the
supplementary material for more visual results from each step of the pipeline.

4 Discussion and Conclusion

In this paper, we have presented an efficient method for weakly-supervised organ
segmentation. The method consisted in over-segmenting the images into object-
sized supervoxels and training a single shared forest using all the images via
joint node optimisation. The joint forest was then used to efficiently estimate
correspondences between supervoxels in an abdominal CT dataset. These cor-
respondences were used to propagate weak organ labels from a small set of 10
images to 140 unlabelled images. A second forest was then trained using organ
labels on a supervoxel level. The organ forest was applied on all the images so
as to correct potential inaccuracies in the over-segmentation and to segment any
remaining unlabelled image. The probabilistic output from the forest was then
used as the unary cost for graph-cut to regularise the output. Apart from poor
results for the pancreas, which is difficult to segment due to its extremely de-
formable nature, the liver, kidney and spleen obtain good segmentation results,
excluding a few outlier cases (a fully-supervised method [15] applied on the same
dataset obtains a dice overlap of 94.9%, 93.6%, and 92.5% for liver, kidneys, and
spleen, respectively.). Our method could potentially be used to provide coarse
segmentation or mine a large dataset of medical images, with extremely minimal
user input. The advantage of our method is that it is efficient, as images can
be greatly down-sampled and the random forest framework is easily parallelis-
able. One limitation is that method is not able to handle extremely deformable
organs, such as the pancreas. Another limitation is that the initial supervoxel
over-segmentation parameters were determined empirically; however, the avail-
ability of a small subset of fully-labelled images could help in determining the
parameters. An alternative would be generating multiple over-segmentations per
image, as advocated by some methods [14, 7] (e.g. by using object proposals). We
could then train a joint forest per over-segmentation set. The output from the
multiple joint forests could then be used as an ensemble. Future work would in-
volve investigating this, as well as investigating the use of alternative supervised
algorithm (e.g. convolutional network), alternative image features to attempt to
segment the pancreas and a more integrated interactive user input, which could
help in correcting outliers and speeding up the interactive segmentation process.
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