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Abstract— Computer-aided diagnosis through biomedical im-
age analysis is increasingly considered in health sciences. This
is due to the progress made on the acquisition side, as well as on
the processing one. In vivo visualization of human tissues where
one can determine both anatomical and functional information
is now possible. The use of these images with efficient intelligent
mathematical and processing tools allows the interpretation
of the tissues state and facilitates the task of the physicians.
Segmentation and registration are the two most fundamental
tools in bioimaging. The first aims to provide automatic tools
for organ delineation from images, while the second focuses on
establishing correspondences between observations inter and
intra subject and modalities. In this paper, we present some
recent results towards a common formulation addressing these
problems, called the Markov Random Fields. Such an approach
is modular with respect to the application context, can be easily
extended to deal with various modalities, provides guarantees
on the optimality properties of the obtained solution and is
computationally efficient.

[. INTRODUCTION

Recent developments on the hardware side have led to
a new generation of scanners as well as image modalities
where the in vivo visualization of anatomical structures of
biological systems is possible in a non invasive fashion. The
exploitation of such an information space is a great challenge
of our days and consists of understanding the anatomical
structure of biological systems and in particular the effect of
pathologies on their complex mechanisms of operation.

One can consider such a task from a mathematical per-
spective. In such a case, for a given modeling task the first
objective consists of parameterizing the problem or associ-
ating the understanding of a complex mechanism through
a mathematical model that describes a generic behavior and
depends on a number of parameters. Given such a model, the
next step aims to establish a relation between the theoretical
model and the available observations. In simple words, we
should be able to understand the impact of model parameters
to the data. Last, but not least, inference of the model
parameters given the data is to be performed, or recover the
set of values that once applied to the model will optimally
explain the data.

There are several challenges in such a process.
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o curse of dimensionality: ideally a complex model
would have excellent capabilities on approximating the
organ under observation behavior but it will be hard to
infer,

« curse of non-linearity: often the observations are not
directly associated with the model and therefore there
is a non-linear relationship between them that makes
inference quite problematic,

o curse of non-convexity: in most of the cases the
designed cost function is too complex and therefore
recovering computationally the optimal solution is not
obvious/feasible

« curse of non-modularity: in particular as it concerns
the data-association and inference steps where the mod-
els are hard-encoded in the process, decreasing the
modularity of the proposed methods to specific clinical
problems and even more specific class of models.

The most common clinical scenario involves the extraction
of a structure of interest from images, the mathematical
modeling of the normal case which consists of recovering a
probabilistic representation of the healthy and in some cases
the non-healthy subjects. In the above mentioned scenario,
one can point out an important limitation that is due the
interdependencies between the three tasks of the processing
chain. In particular as it concerns the data-association and
inference steps where the models are hard-encoded in the
process, decreasing the modularity of the proposed methods
to specific clinical problems and even more specific class of
models.

The use of prior knowledge is often considered to reduce
the model complexity while preserving its ability to capture
the expectable behavior. This is done either through the
use of anatomy or through the use of machine learning
techniques on an important set of training examples. In
order to address the curse of non-linearity, the idea of
decomposition between the model and the data association
is the most prominent. Such an approach aims to decouple
dependencies between the model parameters with the data
making possible a better association between them. The
non-convexity issue can be addressed either by introducing
additional regularization constraints (the objective function
becomes convex) or by dropping some of the model con-
straints towards simplification of the objective function. Last,
but not least modularity can be addressed through the use of
gradient-free methods.

Markov Random Fields [4] is a popular paradigm in
computer vision and medical image analysis. The central
idea is to represent the parameter estimation problem through



a graph. The connections between graph-nodes exploit the
co-dependencies/constraints between the model variables.
The inference consists of finding the most appropriate la-
beling such that the corresponding objective function is
minimized. In this paper, we introduce a novel approach to
perform inference in biomedical image analysis using MRFs,
relaxations and efficient linear programming. The generic
formulation and the corresponding optimization methods will
be presented in section 2. Medical image analysis problems
will be briefly explained in section 3 while the last section
will conclude the paper.

II. MARKOV RANDOM FIELDS AND EFFICIENT LINEAR
PROGRAMMING

A wide variety of tasks in medical can be formulated as
discrete labeling problems. In very simple terms, a discrete
optimization problem can be stated as follows: we are given
a discrete set of variables )V, all of which are vertices in
a graph G. The edges of this graph (denoted by &) encode
the variables’ relationships. We are also given as input a
discrete set of labels £. We must then assign one label
from £ to each variable in V. However, each time we
choose to assign a label, say, x,, to an object p, we are
forced to pay a price according to the so called singleton
potential function V,(z,), while each time we choose to
assign a pair of labels, say, x,, and x, to two interrelated
variables p and ¢ (two objects that are connected to each
other by an edge in the graph §G), we are also forced to
pay another price, which is now determined by the so called
pairwise potential function V,4(z,,z,) (both the singleton
and pairwise potential functions are problem specific and
are thus assumed to be provided as input).

Our goal is then to choose a labeling which will allow
us to pay the smallest total price. In other words, based
on what we have mentioned above, we want to choose a
labeling that minimizes the sum of all the MRF potentials,
or equivalently the MRF energy. This amounts to solving the
following optimization problem:

argn;inZVp(xp)—&— Z Vg (zp, 24q). (1)
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The use of such a model can describe a number of challeng-
ing problems in medical image analysis. Parameters infer-
ence is the most critical aspect in computational medicine
and efficient optimization algorithms are to be considered
both in terms of computational complexity as well as of
inference performance. Discrete MRFs are a very promising
framework that assumes local/limited interactions between
the model variables. Such a paradigm can be used to effi-
ciently model a number of problems in medical imaging, like
denoising, enhancement, feature extraction, segmentation,
shape alignment, registration, etc. However, most of the ex-
isting methods were constrained from the type of interactions
that one can introduce between the model variables. The
use of relaxation techniques, linear programming and duality
are a prominent direction to deal with the minimization of
generic MRFs.

A. LP-Relaxations and Primal Dual Method

In [11] we introduced a novel method to address mini-
mization of static and dynamic MRFs. Our approach is based
on principles from linear programming and, in particular,
on primal dual strategies. It generalizes prior state-of-the-art
methods such as a-expansion, while it can also be used for
efficiently minimizing NP-hard problems with complex pair-
wise potential functions. Furthermore, it offers a substantial
speedup - of a magnitude ten - over existing techniques, due
to the fact that it exploits information coming not only from
the original MRF problem, but also from a dual one. The
proposed technique consists of recovering pair of solutions
for the primal and the dual such that the gap between them
is minimized. Therefore, it can also boost performance of
dynamic MRFs, where one should expect that the new new
pair of primal-dual solutions is closed to the previous one.

B. Master-Slave Decomposition and Message Passing

In [8] a new message-passing scheme for MRF op-
timization was proposed. This scheme inherited better
theoretical properties than all other state-of-the-art mes-
sage passing methods and in practice performed equally
well/outperformed them. It is based on the very powerful
technique of Dual Decomposition [1] and leads to an el-
egant and general framework for understanding/designing
message-passing algorithms that can provide new insights
into existing techniques. Promising experimental results and
comparisons with the state of the art demonstrated the
extreme theoretical and practical potentials of our approach.

C. Tighter LP-Relaxations and Cycle Repairing

In [7] we have focused our attention on MRFs problems
where the relaxation is known to be loose, or the solution
of the relaxed problem is not optimal for the original one.
We have introduced a novel generic solver that it does so
by relying on a much tighter class of LP-relaxations, called
cycle-relaxations. With the help of this class of relaxations,
our algorithm tries to deal with a difficulty lying at the heart
of MRF optimization: the existence of inconsistent cycles. To
this end, it uses an operation called cycle-repairing. The goal
of that operation is to fix any inconsistent cycles that may
appear during optimization, instead of simply ignoring them
as usually done up to now. The more the repaired cycles, the
tighter the underlying LP relaxation becomes. As a result of
this procedure, our algorithm is capable of providing almost
optimal solutions even for very general MRFs with arbitrary
potentials.

D. LP-Relaxations and Higher Order MRFs

In [10] towards addressing MRFs of higher order with
arbitrary dependencies between the model variables we have
introduced a novel optimization approach to derive an op-
timizer. The method can be applied to almost any higher-
order MRF and optimizes a dual relaxation related to the
input MRF problem. Such a generic approach is extremely
flexible and thus can be easily adapted to yield far more
power algorithms when dealing with subclasses of high-order



MRFs. We introduced a new powerful class of high-order
potentials, which are shown to offer enough expressive power
and to be useful for many vision tasks. In order to address
them, we derived a novel and extremely efficient message-
passing algorithm, which goes beyond the aforementioned
generic optimizer and is able to deliver almost optimal
solutions of very high quality.

III. MEDICAL IMAGE ANALYSIS AND COMPUTER AIDED
DIAGNOSIS

One can now combine the theoretical model with the
efficient optimization techniques towards computer-aided di-
agnosis. Segmentation and registration are among the most
fundamental problems in medical imaging. Knowledge-based
segmentation consists of automatic delineation of a structure
of interest from an image being constrained from certain
shape priors. The objective of image fusion is to determine
a transformation that will allow direct comparison of mea-
surements coming from the same or different modalities etc.
Such a technology facilitates clinical diagnosis and better
understanding of the effects of different diseases.

A. Image Segmentation

In [2] and [3], we introduced a new approach to
knowledge-based segmentation. Our method consists of a
novel representation to model shape variations as well as
an efficient inference procedure to fit the model to new data.

The shape model: The considered shape model is
similarity-invariant and refers to a graph where the nodes
p € V represent control points and where the edges (p,q) €
& represent the dependencies between them. An example of
such a model in the case of the left ventricle is presented in
[Fig. (1(a))]. These dependencies are encoded by the normal-
ized Euclidean distances d,, between the connected control
points. With this modeling, we introduce a prior knowledge
about the shape variations by learning the probability density
distributions Pr(d,,) of the relative positions of the control
points, using a training set of labeled shapes. The idea behind
this model is to deform the surface of the object by displacing
the control points in a way that is consistent with the learned
prior constraints.

(b)

Fig. 1: Our model: a deformable shape associated with
control points. (a) The control points and the associated
left ventricle surface. (b) The apical control point with the
associated Voronoi cell, intersected with the blood pool and
the myocardium.

The graph structure: Defining the graph structure by
thoroughly selecting a subset of connections between nodes
is an important issue to achieve a sparse representation that
is computationally efficient on one hand, and that does not
suffer from redundancy on the other hand. Therefore, we
construct an incomplete graph that consists of intra and inter-
cluster connections that represent the inter-dependencies of
the control points. We first determine the clusters according
to the co-dependencies of the deformations of the control
points within the training set. Shape maps [12] provide an
embedding into a manifold where the Euclidean distance
describes the latter criterion. A new linear-programming-
based clustering algorithm [9] is then used to determine
the clusters as well as their number. Then, the connections
between the components of a cluster represent the local
structure while the connections between the clusters account
for the global structure. The distributions of the normalized
distances between these connections encode the prior model
as stated previously.

Model-based segmentation: During search, this model
was used in a MRF framework (1), where the unknown
variables x, are the positions of the control points in the
image domain. To encode the image support, we considered
a Voronoi decomposition ([Fig. (1(b))]) of the domain and
used region-based statistics. Hence, the singleton potentials
Vp(zp) evaluate from the image point of view the local
deformation of the model by displacing the control point
p to the position xz,. The prior knowledge is encoded in
the pairwise potentials V,,(z,,x,) that express the cost of
deforming the connection (p,q) (of the incomplete learned
graph) to the new positions x,, and x4, with respect to the
learned distributions Pr(dp,). The resulting model is com-
putationally efficient, can encode complex statistical models
of shape variations and benefits from the image support of
the entire spatial domain. Some experimental results with
respect to the segmentation of the left ventricle in 3D CT
images are shown in [Fig. (2)].

B. Image Registration

In [5] we introduced a novel and efficient approach to
dense image registration, which does not require a derivative
of the employed cost function. In such a context the reg-
istration problem was formulated using a discrete Markov
Random Field objective function. Considering the common
approach of energy minimization for the registration of two
images I and J

T*:arngingb(I,JOT) , 2)

one seeks for recovering the optimal transformation 7™ w.r.t.
a similarity measure ¢ such that the two images are perfectly
aligned. The new location of an image point x can be
depicted from the transformation 7'(x) = Id(x) + D(x)
which consists of the identity transformation Id(x) = x and
a dense displacement field D(x) = Ax.

Towards dimensionality reduction on the variables we
assume that the dense displacement field can be expressed
using a small number of control points (registration grid) and



Fig. 2: Segmentation results for 3 testing examples. Initial-
ization in yellow and final segmentation in red.

an interpolation strategy [13]. The displacement of an image
point can then be computed by a linear combination of the
displaced control points p, or

M
Ax =Y n(x)Ap; 3)
i=1

where M is the number of control points, Ap; is the
displacement vector of the i-th control point, and 7 being
the interpolation function (often based on B-spline basis
functions).

Then, the registration cost is expressed using a discrete
sum over image costs (using an arbitrary similarity measure)
projected on the control points

M
Emitarity(T) = ¢ (I, JoT) . )
=1

Here, ¢, plays the role of a local similarity measure evaluated
only in the influence area of an control point determined by
the interpolation function 7.

Additionally, a smoothness term is considered that penal-
izes local deviations on the displacement field according to
the neighborhood system £ of the registration grid. Assuming
that neighboring control points should undergo similar move-
ments, one can for instance penalize the squared difference
of the displacement vectors

Esmoothness(T) = Z (Api _Apj)2 . ®)
(i,5)€€

The key idea in our approach is now to reformulate the
registration problem as a discrete MRF labeling problem.
Based on the previous definitions, the control points of the
registration grid are considered as the discrete variables V.
Additionally, the discrete set of labels £L = {x1,...,z;}
corresponds to a quantized version of the displacement space
© = {di,...,d;}. A label assignment x, to a grid node p
is associated with displacing the node by the corresponding
vector d,,. Based on the general MRF energy, we encode the
image costs of the registration problem through the singleton
potential functions as

Vp(zp) =¢p (I, J0Ty,) (6)

where T, is the potential transformation when x, is as-
signed to p. In [5], we propose an efficient approximation
scheme for precomputing the singleton potentials. The idea
is to approximate the image costs simultaneously for all grid
nodes and a specific label x; by applying a global translation
of d,, to the image J.

Additionally, the smoothness term is encoded through the
pairwise potential functions as

Vpg(@p, q) = (dxp - dwq)Q : (7

The problem of dense image registration can then be solved
by minimizing

E@)=Y ¢ (LJoTy,)+A > (dy, —ds,)” , (8)

peV (p,q)EE

where z is the discrete labeling and A controls the influence
of the smoothness term.

In order to account for large deformations and produce
results on a high resolution level a multi-scale incremental
approach is considered where the optimal solution is itera-
tively updated. This is done through successive warping of
the source image .J towards the target image [ on different
image and grid resolutions. Simultaneously, the capture range
of the quantized displacement space is successively refined.
Efficient linear programming using the primal dual principles
was considered to recover the lowest potential of the cost
function. Towards addressing the main limitation of the
discrete optimization methods that is the quantization of the
search space, in [6] we have proposed the use of uncertainties
to locally determine the range of the search space. Some
experimental results with respect to this application are
shown in [Fig. (3)].

IV. DISCUSSION

In this paper we have presented a generic methodological
framework as well as the corresponding inference method to
address medical image analysis. We have opted for the use
of Markov Random Fields and efficient linear programming.
Such an approach addresses most of the challenges of
biomedical image analysis. It can cope with an important
number of problems, can deal with the non-linearity, the non-
convexity and is gradient-free and modular. Two of the most
important problems in the field of medical image analysis



it aaaaaaaan|
HEHH HHH
FHHHHH

Fig. 3: Registration results for 3D MRI data of two different
phases of the breathing cycle. Top: on the left the target
image (inhalation) and on the right the source image (exha-
lation). Middle: the warped source image after registration
and the corresponding deformation field. Bottom: on the left
the difference image before and on the right after registration.

were considered to demonstrate the potentials of this method,
that were the problems of segmentation and registration.

The use of models involving higher order variables in-
teractions is the most promising direction of our work.
Modeling biological behaviors often requires interactions
between significant number of model variables and the pair-
wise model is not the most adequate choice. Furthermore, ex-
ploring the same methodologies to address feature extraction,
data structuring, dimensionality reduction and unsupervised
clustering could be beneficial to a number of problems in
medical image analysis.
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