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Abstract. Methods that leverage neighbourhood structures in high-
dimensional image spaces have recently attracted attention. These ap-
proaches extract information from a new image using its “neighbours” in
the image space equipped with an application-specific distance. Finding
the neighbourhood of a given image is challenging due to large dataset
sizes and costly distance evaluations. Furthermore, automatic neighbour-
hood search for a new image is currently not possible when the distance
is based on ground truth annotations. In this article we present a general
and efficient solution to these problems. “Neighbourhood Approximation
Forests” (NAF) is a supervised learning algorithm that approximates the
neighbourhood structure resulting from an arbitrary distance. As NAF
uses only image intensities to infer neighbours it can also be applied
to distances based on ground truth annotations. We demonstrate NAF
in two scenarios: i) choosing neighbours with respect to a deformation-
based distance, and ii) age prediction from brain MRI. The experiments
show NAF’s approximation quality, computational advantages and use
in different contexts.

1 Introduction

Computational methods that leverage available datasets for analysing new im-
ages show high accuracy and robustness. Among these methods one class that
has lately shown significant potential is neighbourhood-based approaches. These
approaches formulate the set of all images as a high-dimensional space equipped
with an application-specific distance. They then utilize the neighbourhood struc-
ture of this space for various tasks. The underlying principle is that neighbour-
ing images, in other words images that are similar with respect to the distance,
provide valuable and accurate information about each other. Therefore, when
analysing a new image one can propagate information from its neighbours.

Neighbourhood-based approach, as a general framework, has recently been
applied in different contexts. Patch-based techniques [7] and multi-atlas based
methods [11] utilize it for segmenting medical images. Nonlinear “manifold”-
based methods, which are used in different applications [10, 20], also rely on
the neighbourhood-based approach, i.e. the neighbourhood structure is pre-
served during the low-dimensional embedding and subsequent analyses in the
low-dimensional space are based on this structure.

One problem in neighbourhood-based approaches, which currently limits
their use, is determining the close neighbours of a new image within an ex-
isting dataset. In theory, to determine this neighbourhood one should compute
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the distances between the new image and all the other images. However, depend-
ing on the nature of the distance and the size of the training set this exhaustive
search can be computationally very expensive or even impossible. For instance,
in multi-atlas based segmentation one would register a new image to all other
images to determine its neighbours and propagate labels based on this. The cost
of this exhaustive search is high due to computational times of nonlinear regis-
tration. Similar problems exist in “manifold”-based techniques, as also pointed
out in [2]. In case the distance is defined with respect to ground truth annotation
not available for the new image then exhaustive search becomes impossible.

Besides exhaustive search, currently used techniques for finding the neigh-
bourhood of a new image is either through heuristic search strategies [1, 7] or
K-means like approaches such as multi-template constructions [16, 3]. Heuristic
strategies are based on application specific rules, therefore not flexible. K-means
like approaches have a trade-off in choosing the number of centroids, i.e. too
many will result in a computational bottleneck and too few will not correctly
reflect the neighbourhood structure. In manifold techniques, some methods find
the manifold coordinates of a new image without reconstructing the embedding,
[5, 14]. However, these methods also rely on computing all distances. Lastly, if
a set of low-dimensional features that describes the neighbourhood structure
is known then quantization [13] and hashing [19, 15] techniques create short bi-
nary codes from these features for fast image retrieval. Construction of the initial
low-dimensional features still remains an open problem though.

In this article, we present “Neighbourhood Approximation Forests” (NAF),
a general supervised learning algorithm for approximating an arbitrary neigh-
bourhood structure using image intensities. The main principle of NAF is to
learn a compact representation that can describe the neighbourhood structure
of a high-dimensional image space equipped with a user-specified distance. For
a new image, NAF predicts its neighbourhood within an existing dataset in an
efficient manner. We first define the general framework of neighbourhood-based
approaches and detail the proposed algorithm. In the experiments we apply NAF
to two applications. First we treat the problem of determining the closest neigh-
bours of a new image within a training set with respect to the amount of defor-
mation between images. This experiment demonstrates the prediction accuracy
of NAF compared to the real neighbourhood structure and shows the computa-
tional advantages. In the second application we devise a simple neighbourhood-
based regression method powered by NAF to solve the “toy” problem of age
prediction using brain MRI. This experiment demonstrates the use of NAF on
an image space where the neighbourhood relation is determined by a continuous
and non-image based meta information. Results show high regression accuracies
achieved by NAF compared to the values reported in the literature.

2 Neighbourhood Approximation Forests

Neighbourhood-based approach (NbA) is a general framework that is applied for
various image analysis tasks. The underlying principle is to extract information
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from an image using other “similar” images within a dataset with ground truth,
i.e. training set. NbA formulates the set of all images as a high-dimensional space
I, where each point I ∈ I denotes an image. The dataset with ground truth is a
finite subset within this space I = {Ip}Pp=1 ∈ I. The space I is equipped with a
distance ρ(I, J) that quantifies a similarity between images, which is application
dependent. For an image I the set of k most similar images in I is then defined as
the neighbourhood Nk

ρ(I), i.e. k images with the lowest distance to I. To analyse

a new image J /∈ I, one needs to determine Nk
ρ(J) within I to be able to use

NbA. This is challenging because the computation of ρ(·, ·) between J and all
images in I can be expensive or even not possible. In the following we describe
a learning algorithm to approximate Nk

ρ(J) that overcomes these challenges.

Our approach relies on the hypothesis that the neighbourhood structure con-
structed by ρ(·, ·) can be approximated using compact image descriptors derived
from intensity information. Consequently, using these descriptors, for a new im-
age J we can approximate its neighbourhood Nk

ρ(J) within I without the need
to evaluate ρ(·, ·). Neighborhood Approximation Forests (NAF) is a supervised
algorithm that learns such descriptors for arbitrary ρ(·, ·). It is a variant of ran-
dom decision forests [6, 8], i.e. an ensemble of binary decision trees, where each
tree is an independently learned predictor of Nk

ρ(J) given J . As all supervised
learning algorithms NAF has two phases: training and prediction. Below we ex-
plain these phases and then demonstrate NAF in Section 3.
Predicting neighbourhood with a single tree: We represent each image I

using a set of intensity-based features f(I) ∈ RQ of possibly high dimensions,
which can be as simple as intensity values at different points. These features
have no prior-information on ρ(·, ·). For a new image J , each tree T predicts J ’s
neighbours within a training set I by applying a sequence of learned binary tests
to a subset of its entire feature vector fT (J) ∈ Rq, q < Q and fT (J) ⊂ f(J).
Each binary test in the sequence depends on the result of the previous test.
This whole process is represented as a binary decision tree [4], where each test
corresponds to a branching node in the tree. Starting from the root node s0 the
image J traverses the tree taking a specific path and arrives at a node with no
further children, a leaf-node. The path and the final leaf-node depend on the
feature vector fT (J) and the binary tests at each node.

Each leaf-node stores the training images (or simply their indices) In ∈ I
which traversed T and arrived at that node. So, at the leaf-node J arrives there
is a subset of training images which have taken the same path as J and therefore
share similar feature values based on the applied tests. This subset of training
images, NT (ρ)(J), is the neighbourhood of J predicted by T . The subscript T (ρ)
denotes the tree’s dependence on ρ(·, ·), which we explain in the training part.
Approximating neighbourhood with the forest: The forest F is composed
of multiple independent trees with independent predictions. Each tree works with
a different subset of features fT (J) ⊂ f(J) focusing on a different part of the
feature space. We compute the ensemble forest prediction by combining the in-
dependent tree predictions. This combination process computes the approximate
affinity of J to each In by wF (J, In) ,

∑
∀T∈F 1NT (ρ)(J)(In), where 1A(x) is the
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indicator function (we note that [9] uses a similar construction for a different
purpose: defining a neighbourhood structure) The forest prediction of Nk

ρ(J) is
simply the k training images with the largest wF (J, In) values. We denote this
set with Nk

F (ρ)(J). Once again the subscript denotes the ρ of the forest.
Training: In order to learn the structure of a tree we use the training set I and
the distances ρ(In, Im) for each image pair in I. Our goal is to find the sequence
of binary tests on image features that sequentially partition I into the most
spatially compact subsets with respect to ρ(·, ·). Assuming I is a representative
dataset, the learned binary tests would then successfully apply to other images.

Given a node s and the set of training images at it, Is, we first define branch-
ing of s via the binary test and the partitioning of Is into two as

ts(In;m, τ) ,

{
In ∈ IsR , if fmT (In) > τ,
In ∈ IsL , if fmT (In) ≤ τ, ∀In ∈ Is (1)

where fmT denotes the mth component of fT (In), τ ∈ R, and sL and sR are the
children of s. At every node we would like to optimize the parameters m and
τ to obtain the most compact partitioning of Is. To do this we define spatial
compactness of a set A with respect to ρ(·, ·) as

Cρ(A) ,
1

|A|2
∑
Ii∈A

∑
Ij∈A

ρ(Ii, Ij), (2)

where |A| denotes the size of the set and Cρ(A) its cluster size. Using Cρ(·) we
can formulate the gain in compactness a specific set of parameters yields with

G(Is,m, τ) , Cρ(Is)−
|IsR |
|Is|

Cρ(IsR)− |IsL |
|Is|

Cρ(IsL), (3)

where the weights |IsR |/|Is| and |IsL |/|Is| avoid constructing too small partitions.
Using this formulation we determine the best possible binary test at node s with
the following optimization problem

(ms, τs) = argm,τ max G(Is,m, τ). (4)

In practice we do not take into account all m in the above optimization problem
but choose a small random subset of the components of fT (·) at each node as is
commonly done in decision forests [8]. The optimization over τ though is done
through exhaustive search.

For each tree we start from its root node setting Is0 = I. We then sequentially
determine the binary tests using Eqn. 4 and add new nodes to the tree. We
continue this process and grow the trees. The growth process is terminated
at a node when i) we can no longer find a test that creates a more compact
partitioning than the one in the node, i.e. ∀(m, τ), G < 0, ii) the number of
training images within the node is too small or iii) we reach at the maximum
allowed depth and stop due to computational cost considerations.
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3 Experiments

In this section we demonstrate NAF on two different applications. Our aim is
to analyse NAF in different experimental setups and for different image spaces.
We also highlight the application-specific components that can be changed to
use NAF in different contexts. For both experiments we use 355 T1 weighted
brain MR images from the publicly available OASIS dataset [12]. These images
are skull stripped, histogram equalized and aligned to a common reference frame
via affine registration. The resolution of each image is 1× 1× 1 mm3.
A. Choosing the closest images for non-linear registration: In the first
application we focus on predicting the neighbourhood of a new image J within a
dataset I with respect to the amount of deformation between images. We predict
images in I that need the least amount of deformation to nonlinearly align them
to J . This is a relevant problem for large cohort studies and multi-atlas based
segmentation methods. Our aim in this experiment is to demonstrate the qual-
ity of NAF’s predictions compared to the real neighbourhoods for this highly
nonlinear problem. The application specific and experimental details are given
below along with results and discussions.
ρ(·, ·): We measure the amount of deformation between two images using the

distance ρ(I, J) ,
∫
ΩI

log |Jac(ΦI→J)| dΩI +
∫
ΩJ

log |Jac(ΦJ→I)| dΩJ , where ΩI
is the domain of I, ΦI→J is the deformation mapping I to J , i.e. ΦI→J ◦ I = J ,
and Jac(·) is the Jacobian determinant. We use the diffeomorphic demons algo-
rithm [18] for determining each deformation.
Dataset: The first 169 images are used in training and the rest 186 for testing.
Features: We randomly choose Q = 10000 pairs of voxels in the reference frame.
Then we smooth each image with an averaging kernel of size 12× 12× 12 mm3.
The feature vector for each image consists of the intensity differences between
the pairs of voxels in the smooth version of the image.
NAF details: Using the training set we train a NAF of 1500 trees, each of max-
imum depth 6. Minimum number of allowable training images for a node is set
to 7 beyond which we stop growing the tree. Each tree is constructed using a
random subset of the entire feature vector of size q = 1000. For each test image
J we predict its neighbourhood, Nk

F (ρ)(J), for different values of k = 1, 3, 5, 7, 10.

Evaluation and Results: For each test image J , we evaluate the quality of Nk
F (ρ)(J)

by comparing it to the real neighbourhood Nk
ρ(J) using the following ratio

%J(Nk
F (ρ)(J)) ,

∑
I∈Nk

F (ρ)
(J) ρ(I, J)∑

I∈Nk
ρ(J)

ρ(I, J)
≥ 1, (5)

which measures how close the images in Nk
F (ρ)(J) to J compared to the ones

in Nk
ρ(J). In Table 1 we provide the mean values and standard deviations of

%J(Nk
F (ρ)(J)) computed over 186 test images for different k. These values can

be best interpreted in comparison with the ranges %J(·) can take for each k. In
order to present these ranges, for each test image J and each k we randomly
chose 2000 subsets within the training set. We denote each of these subsets by
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Nk
r (J). We then computed %J(Nk

r (J)) values and present the mean and stan-
dard deviations for these random subsets (computed over 186× 2000 subsets for
each k) in Table 1. Results given in Table 1 demonstrate that NAF predictions
are indeed very close to the real neighbourhoods in terms of their distances to
J . Especially in comparison with %J(Nk

r (J)) we notice that %J(Nk
F (ρ)(J)) val-

ues are within the lowest part of the entire range of %J(·). We further plot in
Figures 1(a) and (b) the normalized histograms for %J(Nk

r (J)) and Nk
F (ρ)(J) for

k = 1 and k = 7. Comparing these histograms we see that the distribution of
Nk
F (ρ)(J) is more concentrated close to one and it lies in the lower frequency re-

gion of the distribution for %J(Nk
r (J)). The difference is even more pronounced

for k = 7, i.e. choosing multiple neighbours, which is more relevant for most
applications such as multi-atlas based segmentation. Lastly in Figures 1(c)-(e)
we show two sets of examples (different rows) where NAF predicts a different
closest neighbour than the real one. However, visually the test image and the
predicted neighbour are very similar.
Computation Times: For each test image NAF took at maximum 10.2 seconds
to predict the neighbourhood with a C++ implementation on an Intel Xeon R©

at 2.27 GHz. Exhaustive search requires 169 nonlinear registrations which took
on the average 1.9 hours for each test image.
B. Age regression from brain MR scans: In the second application we

focus on a high-dimensional image space equipped with a distance based on
non-image based meta information: subject age. We devise an image-based re-
gression algorithm powered by NAF to predict the age of a subject using the MR
image. Our aim is to demonstrate the use of NAF for this type of applications
and also quality of the predicted neighbourhood through an analysis end result.
ρ(·, ·): The distance of the image space is ρ(I, J) = |age(I) − age(J)|, where
age(I) denotes the subject’s age with image I and | · | is the absolute value.
Dataset: We use the 355 images and perform leave-one-out tests.
Features: We randomly choose Q = 10000 voxels in the reference frame and use
the intensity values taken from the images smoothed as in the previous case.
NAF details: Most details of NAF are the same as the previous case. The only
differences is this time the maximum tree depth is 12 and we use 700 trees.
Evaluation and Results: In this application we evaluate NAF’s results by com-
paring the real age of the test subject with the prediction obtained using the
neighbourhood predicted by NAF. For each test image J we predict the age of

k 1 3 5 7 10

%J(Nk
F (ρ)(J)) 1.05 ± 0.04 1.05 ± 0.02 1.04 ± 0.02 1.04 ± 0.02 1.04 ± 0.01

%J(Nk
r (J)) 1.20 ± 0.07 1.18 ± 0.06 1.18 ± 0.06 1.17 ± 0.06 1.16± 0.06

Table 1. Top row: mean and standard deviations for the ratios of total distance from
Nk
F (ρ)(J) to J and from Nk

ρ(J) to J , see Eqn. 5. Bottom row: presents the range of %J(·)
within the training set by providing same values for random subsets of the training set.
NAF predictions are very close the real neighbourhood considering the range of %J(·).
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Fig. 1. Experiment A:(a,b) Normalized histograms of %J(Nk
F (ρ)(J)) (light) and

%J(Nk
r (J)) (dark) for k = 1 , 7 respectively. NAF predictions are concentrated close

to one and lie in the low frequency region of the distribution for %J(Nk
r (J)) (c)-(e)

Two tests (different rows) where NAF suggests a different closest image than the real
one: (c) the test image, (d) real closest (e) NAF prediction. Note that images are very
similar visually. Experiment B:(f) Image-based regression for age prediction by NAF
using N15

F (ρ)(J). Note the high correlation r = 0.93.

the subject by taking the average age in N15
F (ρ)(J). Figure 1(f) plots the predicted

age vs. actual age for all 355 tests. The resulting correlation is reasonable high
with a r-value = 0.93 ([17] reports slightly lower values for a slightly smaller
dataset). We observe that NAF is able to approximate an informative image
neighbourhood for a new image that is useful for the regression analysis.

4 Conclusion

We proposed an algorithm for solving one of the critical problems common to all
neighbourhood-based approaches for image analysis: approximating the neigh-
bourhood of a new image within a training set of images with respect to a given
distance. The algorithm is general and can be applied to various tasks that utilize
different distance definitions, as shown in the experiments. Furthermore, as the
method is based on the framework of random decision forests the computation
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times are fast. We believe that applications such as multi-atlas registration and
‘manifold’-based techniques can benefit from the proposed algorithm.
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