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Abstract

Leveraging available annotated data is an essential component of many modern methods for
medical image analysis. In particular, approaches making use of the “neighbourhood” structure
between images for this purpose have shown significant potential. Such techniques achieve high
accuracy in analysing an image by propagating information from its immediate “neighbours”
within an annotated database. Despite their success in certain applications, wide use of these
methods is limited due to the challenging task of determining the neighbours for an out-of-
sample image. This task is either computationally expensive due to large database sizes and
costly distance evaluations, or infeasible due to distance definitions over semantic information,
such as ground truth annotations, which is not available for out-of-sample images.

This article introduces Neighbourhood Approximation Forests (NAF), a supervised learning
algorithm providing a general and efficient approach for the task of approximate nearest neigh-
bour retrieval for arbitrary distances. Starting from an image training database and a user-defined
distance between images, the algorithm learns to use appearance-based features to cluster images
approximating the neighbourhood structured induced by the distance. NAF is able to efficiently
infer nearest neighbours of an out-of-sample image, even when the original distance is based
on semantic information. We perform experimental evaluation in two different scenarios: i) age
prediction from brain MRI and ii) patch-based segmentation of unregistered, arbitrary field of
view CT images. The results demonstrate the performance, computational benefits, and potential
of NAF for different image analysis applications.

Keywords: Approximate Nearest Neighbours, Random Decision Forests, Machine Learning,
Patch-based Segmentation, Image-based Regression, Brain MRI, CT

1. Introduction

Computational methods exploiting annotated datasets for image analysis can yield high accu-
racy and robustness. Amongst various ways of integrating existing data into analysis tasks, one
class of methods has shown significant potential: Neighbourhood-based Approaches (NbAs)[1].
These intuitive approaches perform analysis on a new out-of-sample image by propagating infor-
mation from annotated images which are most “similar” to the new one. The similarity is based
on an application-specific distance, and the set of the most similar images is denoted as the set of
nearest neighbours with respect to this distance. Since the construction of an explicit model over
the annotated database is avoided, such approaches are also called non-parametric or exemplar-
based. Unlike model-based or parametric approaches, which analyse new images using a model
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distribution, NbAs can leverage the full variability present in a database. Despite their simplicity
and descriptive power, so far the application of NbAs has been limited due to lack of annotated
data and issues related to general applicability and computational costs. Motivated by the rapid
increase in publicly available databases, this article focuses on the above computational issues
of neighbourhood-based methods, aiming to make this approach practical for a large class of
applications in image analysis.

Neighbourhood-based approaches have been gaining momentum in the community over the
last few years. Recent works apply variations of the general framework in different settings.
Patch-based techniques [2, 3] and multi-atlas methods [4, 5, 6, 7, 8, 9], use nearest neighbour
search for segmenting medical images by leveraging large databases containing voxel-wise an-
notations. Nonlinear “manifold”-based methods, used in a large variety of tasks ranging from
image registration to semantic classification [10, 11, 12, 13, 14, 15], apply the same general
framework. Here, subsequent analysis based on prior nonlinear dimensionality reduction relies
on the neighbourhood structure present in the data. Indeed, the goal of most dimensionality
reduction methods is to preserve precisely this neighbourhood-structure in the embedding.

Despite the fact that methods utilising NbAs have demonstrated performance with state-of-
the-art accuracy and robustness, these approaches suffer from certain limitations. The main
challenge is the retrieval of nearest neighbours for an out-of-sample image with respect to an
existing database. This difficulty manifests itself in two layers:

1. Cost of Distance Computation. Depending on the nature of the distance metric and the
size of the database, determining the neighbours can be computationally very expensive. In
the most naive approach, one has to compute the distance between the out-of-sample image
and all the database images. The cost of this exhaustive search can become impractical,
especially if the size of the database is large, or if the distance computation involves costly
operations (e.g. deformable registration). This issue is also noted for “manifold”-based
techniques, particularly for the task of computing the manifold coordinates of an out-of-
sample image, as pointed out by [16].

2. Feasibility of Distance Computation. In many scenarios the neighbourhood structure
of interest is best defined via an application-specific distance which relies on additional
meta-information, such as diagnostic labels, voxel-based annotations, or other non-image
characteristics. Since such semantic information is usually not available for a new im-
age (and inferring this information might be the actual aim of the analysis task), the dis-
tance between the new image and the database images cannot be computed. So, even in
cases where database size allows exhaustive search, it seems impossible to determine the
neighbours without the semantic information. To overcome this problem, it is common
to replace the original distance with a surrogate which is based only on image intensity
information at the expense of introducing heuristics and potential modeling inaccuracies.

This article presents a novel algorithm, Neighbourhood Approximation Forests, which ad-
dresses the challenges of nearest neighbour retrieval in the general NbA framework. NAF is a
supervised learning method for approximating the neighbours of an out-of-sample image within
a database, where the neighbourhood is induced by an application-specific distance of arbitrary
definition. During the learning phase, NAF uses a training database, which consists of images
and pairwise distances, to learn to use appearance-based features to cluster the images approx-
imating the neighbourhood structure induced by the application-specific distance. This process
starts from high-dimensional representation of images that consist of appearance-based features
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that are extracted without any prior assumptions on their individual relevancy or their compact-
ness. From this high-dimensional space, the algorithm automatically determines the discrimina-
tive features along with associated sequences of tests, which yields a clustering of the training
database that approximates the distance-induced neighbourhood structure. As a variant of ran-
dom decision forests [17, 18], the algorithm encodes the sequences of tests in an ensemble of
decision trees. For an out-of-sample test image, NAF predicts its closest neighbours within the
database in an efficient manner by traversing the constructed trees and counting co-occurrences
of the test image and all database images that reached the same leaves of the trees. This predic-
tion procedure does not require the evaluation of the distance since the trees only contain tests
on features. Therefore, NAF addresses both the cost and the feasibility issues in the distance
computation.

While a number of approaches for nearest neighbour retrieval has been proposed in the liter-
ature, to the best of our knowledge, NAF is unique in its built-in feature selection property and
its generality. It leverages the automatic feature selection strategies of decision trees for approxi-
mating neighbourhood structures. As a result, NAF is able to handle truly high-dimensional rep-
resentations of images, e.g. 10, 000 features, in its learning phase. This capability is especially
important in the context of medical image analysis, where determining the distance-specific fea-
tures themselves is of interest to understand links between image-based markers and diseases
[19, 20]. Additionally, through a generic formulation, NAF is able to work on completely ar-
bitrary distance definitions, whether based on semantic or image-based information. Therefore,
NAF can be directly applied to a wide variety of applications without modifying the core algo-
rithm itself. In the following, we highlight the relation of NAF to previous work in more detail.

1.1. Related Work
Neighbourhood-based approaches in medical image analysis mostly rely on appearance-

based distances only [21, 5, 22, 2, 3]. Therefore, the focus of these methods is on reducing
the costs of distance computation. In contrast, NAF is able to incorporate distances that are de-
fined on semantic information and relate them to the space of appearance-based features. The
computational efficiency of NAF, on the other hand, is directly inherited from the properties of
decision trees.

Acknowledging the impracticality of exhaustive search, approaches from the field of medical
image analysis use either heuristics for efficient search as in [5, 2, 3] or unsupervised k-means
clustering for multi-template constructions [22, 21]. Heuristic strategies are a set of application-
specific ad-hoc rules for speeding up the neighbourhood search. Therefore, they have to be
explicitly designed for each application, which reduces their flexibility. In contrast, NAF is a
learning technique that automatically adapts to the given application in a supervised manner.
Strategies based on k-means achieve efficiency by aiming to determine representative centroids
for the database reflecting different data clusters. The neighbours of an out-of-sample image are
then obtained from the set of centroids. The difficulty here is the optimal choice of the number
of centroids. Too few centroids will not correctly reflect the neighbourhood structure, and too
many centroids increase computational time but also might yield an overfitted representation.
Also, the centroids computed in an unsupervised way might not reflect the same neighbourhood
structure which is induced by the original distance. In contrast, NAF takes into account each
individual image in the database for predicting the neighbours, remains efficient thanks to its
inherited properties, and uses supervision for clustering the data points.

In the area of machine learning there are numerous works which tackle the problem of
(approximate) nearest neighbour search for an out-of-sample image. The first group of such
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techniques are supervised metric learning methods, which aim to approximate an arbitrary dis-
tance via a surrogate metric learned from compact representations of images. The learned metric
should preserve the structure induced by the original distance, [23, 24, 25, 26, 27, 28]. Given an
initial set of image descriptors, these methods rely on dimensionality reductions (such as PCA)
and the new metric is defined in the lower dimensional space. However, these methods rely on
the assumption that there is a distance-preserving transformation from high to low dimensional
feature spaces. Finding appropriate transformations is a non-trivial task. Furthermore, the fea-
tures in the low-dimensional space are not easily interpretable as they represent a complex linear
or non-linear combination of the higher dimensions. In contrast to this, NAF is capable of han-
dling directly high-dimensional input feature spaces removing the need of feature pre-selection
or dimensionality reduction. The learned, discriminative features remain interpretable and, for
instance, allow to generate feature relevance maps.

The second group of machine learning techniques for approximate nearest neighbours are
hashing methods. These techniques also focus on finding compact representations of images,
particularly in form of binary codes. Such codes allow efficient retrieval of neighbours from
possibly very large databases, [29, 30, 31, 32]. Similar to supervised metric learning these
works also assume an appropriate mapping from high to low-dimensional features. However,
finding appropriate mappings which are capable of representing the neighbourhood still remains
a challenging problem.

The last class of approaches aims to find the manifold coordinates of a new image with-
out reconstructing the embedding using non-linear dimensionality reduction techniques [33, 34].
These methods focus on the dimensionality reduction part only and rely on the assumption that
the distance between the new image and all other images in the database can be computed effi-
ciently. Therefore, these methods do not focus on the computational issues which are addressed
by NAF.

1.2. Article Overview

The remainder of the article is structured as follows. Section 2 describes the method in detail.
The properties and potential of NAF are demonstrated by experiments on two different applica-
tions in Section 3. We show an application for image-based age regression from brain MRI, and
patch-based segmentation of varying field-of-view CT scans. Following the experimental evalu-
ation, we conclude the article with a discussion and an outlook of further possible applications of
NAF. Please note that the presented article is an extended version of the conference proceeding
[35], which was presented at MICCAI 2012. This article differs significantly in the description of
the method as well as the relation to previous work, the experimental setup, analysis and results.

2. Neighbourhood Approximation Forests

The general framework of NbA leverages annotated data for various image analysis tasks.
The underlying principle is to analyse an image using other “similar” images, for which prior
information is available. The nature of the prior information can vary from semantic annotations
to outputs of previously performed computationally expensive calculations.

In the most abstract sense, NbAs formulate the set of all images as a high-dimensional space
I, in which individual images are represented as points I ∈ I. The set of images with available
prior information is a finite subset within this space I = {Ip}

P
p=1 ∈ I and it is often called the

training dataset or simply the database. The space I is equipped with a distance ρ(I, J) : I×I →
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R that quantifies a similarity between images. The definition of ρ(·, ·) is application-specific and
not necessarily appearance-based. For instance, ρ(·, ·) may depend on certain meta information
according to the goal of the application.

For analysing a new image J, for which prior information is not available, i.e. an out-of-
sample image J < I, neighbourhood-based approaches focus on the set of k images from I,
which are most similar to J. More precisely, they define the set of k images in I with the lowest ρ
distance to J as the k nearest neighbour (kNN) images. Here we denote this set by Nk

ρ(J). After
determining the kNNs, the NbA framework performs the subsequent analysis by propagating
information from Nk

ρ(J) to J.
Finding Nk

ρ(J) within I is the essential step in NbA. As discussed in the introduction, this step
is very challenging because the computation of the distance ρ(·, ·) can be infeasible or expensive,
depending on the nature of the distance. In the following, we describe a learning algorithm to
approximate Nk

ρ(J) that overcomes these challenges.
Neighbourhood Approximation Forests (NAF) relies on the hypothesis that the neighbour-

hood structure constructed by ρ(·, ·) can be approximated using the information contained in the
images. Based on this assumption, the algorithm learns to approximate the neighbourhood Nk

ρ(J)
of an out-of-sample image J within I by using only image-based features, without the need to
actually evaluate ρ(·, ·). Naturally, the set of features that are used for such an approximation
depends on the distance ρ(·, ·). As a supervised learning method, NAF uses a training set to
automatically discover distance-specific image-based features in an initially high-dimensional
feature space.

NAF is a variant of random decision forests [17, 36], i.e. an ensemble of binary decision trees,
where each tree is an independently learned predictor of neighbourhood. Being a supervised
learning method, it has two phases: training (construction of trees) and prediction. The rest of
this section describes these phases in detail starting from the prediction procedure.

2.1. Tree Testing: Predicting neighbourhood with a single tree

The function of a tree in NAF is to predict the nearest neighbours of an image J with respect
to ρ(·, ·) using a high-dimensional representation of the image f(I) ∈ RQ, which is composed
of intensity-based features. Similar to conventional binary decision trees, [18], a NAF tree T is
a graphical representation of a set of hierarchically nested binary tests. This representation is
composed of nodes and directed edges as illustrated with an example in Figure 1.

Given an image J, the prediction procedure starts at the root node of the tree, s0. The binary
test associated with s0 is applied to f(J) and based on the result J is sent to either one of its two
child nodes, i.e. the two nodes connected to s0 via outgoing edges. At this new node, say s1, the
next associated test is applied to f(J) and J is sent further to one of s1’s children. This process is
repeated for every new node until J reaches a node with no further outgoing edges, a leaf node.
The path that image J traverses until it reaches a leaf node depends on the feature vector f(J) and
the binary tests associated with each node in the tree.

At each leaf node the algorithm stores training images In ∈ I (represented by their indices)
which have arrived at that particular node following the same procedure as a test image. The
training images contained in the leaf node reached by J, have taken the same path as J, and
therefore have features which are similar to a certain degree to those of J, according to the
applied tests. This subset of training images, denoted as NT (ρ)(J), is the prediction of tree T for
the neighbourhood of J. The subscript T (ρ) denotes the tree’s dependence on ρ(·, ·), which we
will explain in detail in Section 2.2.

5



s0

Figure 1: Toy example illustrating the NAF testing procedure. For the out-of-sample image J (top), an analysis task is
to be performed, based on similar images in the database (bottom). The similarity between the images is based on some
meta information, represented by colour. This information is available for the database images, but not for the out-of-
sample image. The trained NAF tree determines the neighbourhood for J, by hierarchically performing tests at each
node, based on intensity-based feature description of J. The parameters for the tests are learned in the NAF training step
(Section 2.2, Figure 2) in a supervised manner, such that the approximated neighbourhood reflects the original simliarity.

Figure 1 illustrates the testing procedure for a toy example where the similarity between
images is defined by the proximity of the colours of their bounding boxes, e.g. yellow is more
similar to orange than to red. As described above, the test image starts at the root node, follows
a path based on the binary tests and ends up at a leaf node occupied by yellow images, which are
the predicted neighbours of the test image for this tree.

The neighbours predicted by a single tree depend on the binary tests stored in the tree nodes.
The next section describes how these tests are learned and how each tree is constructed using the
training database.

2.2. Tree Training

The goal of the training phase is to discover a small set of image features and associated bi-
nary tests that can be used to approximate the neighbourhood structure defined by ρ(·, ·) using the
procedure described in Section 2.1. NAF achieves this in a supervised manner using a training
set composed of an image set I and pairwise distances ρ(In, Im), ∀In, Im ∈ I. Furthermore, the
training set also contains a high-dimensional representation of each image f(I). Unlike previous
approaches, NAF does not assume that f(I) is a compact descriptor. f(I) can be of high dimen-
sions, e.g. Q is higher than 104 in the experiments in Section 3, and may contain features that are
both relevant and non-relevant for approximating ρ(·, ·). In fact the role of training is to discover
the relevant features within f(I).

The training phase constructs a tree starting with its root node and progressively growing it
deeper by adding new nodes. Tree construction corresponds to finding the set of nested binary
tests on image features that sequentially partition I into spatially consistent and compact subsets
with respect to ρ(·, ·). Assuming I is a representative database, the learned binary tests can be
successfully applied to other, unseen images. Let us describe this procedure in detail.

The construction of a tree T starts by randomly choosing a subset of the entire feature vector
fT (I) ∈ Rq, q < Q, fT (I) ⊂ f(I). By injecting such randomness each tree works on a different
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Figure 2: Toy example illustrating the NAF training procedure. The similarity between images is defined as the proximity
of the bounding box colours. The tree construction starts at the root node with the entire training database, and at each
node the training set is partitioned into smaller sets. The partitioning is performed by optimising the parameters of
the test function at each node according to Eq. 4, such that the meta-information-based similarity is captured by the
intensity-based features.

subspace, which yields decorrelated trees. This allows individual trees to produce independent
predictions and is known to improve generalisation as demonstrated in previous works [18, 17].

Using the randomly chosen feature set fT (I) NAF performs tree construction by recursively
determining the optimal branching at each node and for splitting the incoming data into two
sets. Assume the algorithm is at a given node s and the set of training images at this node is Is.
Branching of s and the partitioning of Is into two sets is defined via a binary test

ts(In; m, τ) ,

{
In ∈ IsR , if f m

T (In) > τ,
In ∈ IsL , if f m

T (In) ≤ τ, ∀In ∈ Is, (1)

where f m
T denotes the mth component of fT (In), τ ∈ R, and sL and sR are the children of s.

Optimising this branching aims to estimate the parameters m and τ that yield the most compact
partitioning of Is. To this end, we define the spatial compactness of a set A with respect to ρ(·, ·)
as the Cluster Size:

Cρ(A) ,
1
|A|2
∑
Ii∈A

∑
I j∈A

ρ(Ii, I j), (2)

where |A| denotes the size of the set. Based on Cρ(·), the gain in compactness for a specific set
of parameters is determined by

G(Is,m, τ) , Cρ(Is) −
|IsR |

|Is|
Cρ(IsR ) −

|IsL |

|Is|
Cρ(IsL ), (3)

where the weights |IsR |/|Is| and |IsL |/|Is| avoid bias towards unbalanced partitions. Based on
G(Is,m, τ), the best possible binary test at node s is determined by solving the following optimi-
sation problem

(ms, τs) = argm,τ max G(Is,m, τ) such that |IsR | ≥ ∆, |IsL | ≥ ∆, (4)
7



where ∆ is a parameter denoting the minimum allowed number of samples in a node. The value
of ∆ prevents us from obtaining nodes where meaningful statistics cannot be drawn due to small
sample size. This optimisation problem can be computationally expensive if one considers all m,
especially if the feature vector fT (·) is of high dimension. The proposed algorithm does not take
into account all m but chooses a small random subset of the components of fT (·) at each node.
This corresponds to the common approach of randomised greedy optimisation in decision forests
[36]. For each value of m we exhaustively optimise over τ thresholds. Training is initialised by
setting Is0 = I. These steps are repeated for each new node in a recursive manner.

Tree growing is stopped at a node when i) the algorithm can no longer find a test that creates
a more compact partitioning, i.e. ∀(m, τ),G < 0, ii) the number of training images within the
node falls below a threshold, i.e. |Is| < ∆ or iii) the maximum allowed depth is reached (to limit
memory requirements and computational cost of testing).

We illustrate the training process for a toy example in Figure 2. Tree construction starts at
the root node with the entire training database, where similarity between images is defined as
the proximity of the colours of the bounding boxes for each image. At each node the training
set is partitioned into smaller, more compact sets. Sequentially applying the node optimisation
the algorithm produces leaf nodes where tree growing is stopped. Here, the remaining images
in each leaf node are very similar to each other and no further partitioning is possible. For
illustration purposes we assume that there are features that can perfectly partition the data and
the optimisation at each node is able to determine these features.

In the training phase multiple trees are constructed independently and due to the randomness
in construction they are all different. The final component of the NAF algorithm is the integration
of individual tree predictions into a forest prediction for the k nearest neighbours for an out-of-
sample image J. We describe this step in the following section.

2.3. NAF: Predicting neighborhood with the forest

To predict the closest neighbours of an image J, NAF combines the individual tree predictions
and computes the affinity of J to each database image In by

wF(J, In) ,
∑
∀T∈F

1NT (ρ)(J)(In), (5)

where 1A(x) is the indicator function, i.e. 1A(x) = 1 if x ∈ A, and 0 if x < A. wF(J, In) simply
counts the number of trees that predict In as the nearest neighbour of J. A high value of wF(J, In)
indicates that images J and In share many similar features based on the binary tests which were
optimised with respect to ρ(·, ·). Therefore, it is reasonable to assume that In is within close
vicinity of J. We would like to note that in [37, 36, 38] similar integration strategies have been
used. However, in [37, 36] the purpose is to define a neighbourhood structure using the forest
rather than approximating a given one as proposed here. While in [38] the affinities for an image
are only considered in the specific setting of image annotation to improve the information prop-
agation in the leaf node for this application. Compared to these works, NAF is a more general
approach that can handle arbitrary distances and neighbourhoods. Thus, the above mentioned
works can be seen as special instantiations within our framework.

Once the affinities wF(J, In) are calculated for all In ∈ I, the NAF computes the forest predic-
tion of Nk

ρ(J) simply by determining the set of k training images with the largest wF(J, In) values.
We denote this set as Nk

F(ρ)(J). The subscript indicates dependency of the forest on ρ(·, ·).
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2.4. Design Parameters

NAF contains several design parameters that should be set based on the application. This
section provides a list of these parameters and provides intuitive explanation for each one of them.
A quantitative analysis of the most important parameters is provided using the age-regression
experiment presented in Section 3.1.

2.4.1. Minumum Samples per Node ∆

The minimum sample size ∆ is an important parameter that influences the training phase of
the algorithm. It plays a role in the tree construction both by constraining the node optimisation
in Equation 4 and by setting a stopping criteria for the tree growth. The ∆ parameter ensures
that each leaf node can produce a statistically meaningful prediction. In addition, ∆ is also
related to overfitting of the learning algorithm. Setting ∆ too low would force a tree to learn
very fine details of the training set leading to overfitting. As a result the trained forest might
not generalise to unseen images. On the other extreme, setting ∆ too high would yield limit the
predictive power of the algorithm. In Section 3.1 we analyse the effect of this parameter for a
neighbourhood-based regression problem.

2.4.2. Maximum Tree Depth
In conventional methods using decision trees, the maximum tree depth is an important pa-

rameter related to overfitting, see [36]. In NAF its effect is dampened by the ∆ parameter. If the
maximum depth is set very high, tree growing would be stopped due to the ∆ parameter before
the maximum depth is reached. In contrast, a too low value for the maximum depth may result
in leaf nodes which could have been split further into more compact partitions. Therefore a too
low maximum depth may again limit the predictiive power of a tree. Besides its influence on the
approximation accuracy, the maximum tree depth also influences the memory requirements and
the computational cost of prediction. A deeper tree requires more memory and will take longer
to traverse.

2.4.3. Number of Trees
Each tree works on a randomized subspace of the entire feature representation of an image.

Increasing the number of trees almost always results in an increased accuracy since overall pre-
dictions are made with more information. This increase often levels off after a certain number
of trees. The leveling off becomes important when one considers the fact that the number of
trees affects the computational complexity of the algorithm both during training and testing. The
point where the accuracy levels off, however, is application dependent and should be analysed.
Section 3.1 provides such an analysis for the MRI based age-regression problem.

2.4.4. Feature Space Size Q and Restriction q
In general, the discriminative set of features which will be relevant for approximating the

neighbourhood structure induced by an arbitrary ρ(·, ·) is not known a priori. For certain image
classification tasks and retrieval problems different authors rely on SIFT features or even hand-
crafted features. However, it is desirable to automatically detect the relevant features by learning
them with respect to the training data and the distance. This is precisely what the NAF training
aims for. To this end, the parameter Q is set fairly high trying to include as many features as
possible into the training.
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The q parameter influences the learning procedure in two ways. First, the ratio q/Q has an
impact on the similarity between different trees in the forest. A value close to 1 yields trees which
are more correlated as they are largely using similar regions of the feature space. In contrast, a
low q/Q ratio will result in more decorrelated trees which is a desired property. Second, the
absolute value of q relates to how much information each tree is exposed to and also impacts the
computational complexity for the construction (due to Equation 4). A low q value may result
in non-descriptive trees, while a high q value would result in descriptive trees but with high
computational costs at training time. In summary the value of q should be selected considering
Q and the computational budget. For instance, for the age-regression experiment presented in
the next section the q/Q ratio is set to 0.1 while Q is set to relatively high values around 104.
For the patch-based segmentation experiment on the other hand, q/Q is set to 1/3 and Q to
1500. Furthermore, in both experiments small variations around this value have not influenced
the results.

3. Experiments

In the following, we demonstrate the properties and performance of NAF with experiments
on two different applications: image-based age regression from MRI brain scans, and patch-
based segmentation of varying field-of-view unregistered CT scans. These two applications have
different goals, work with different imaging modalities, and use different definitions of image dis-
tances, ρ(·, ·). In both cases, we construct simple analysis methods based on the neighbourhood-
based approach utilizing NAF, and evaluate the resulting methods. Our evaluation focuses on
quantifying the added benefits of NAF on the final analysis result: regression and segmentation
accuracies. Particularly, we compare results obtained using NAF and obtained using the con-
ventional appearance-based (unsupervised) clustering methods for nearest neighbour retrieval.
Quantitative and qualitative results confirm the benefits of incorporating NAF for nearest neigh-
bour search.

For each application, we first discuss the input data which consists of the image database I,
the distance measure ρ(·, ·), and the feature space f(·), followed by explaining parameter settings,
evaluation and results.

3.1. Age Regression from Brain MRI

In this first application the goal is to predict the age of a subject from its brain MRI, and
a database of images for which the ages of the scanned subjects are known. The algorithm we
devise here is to determine the closest neighbours of an image within the database using NAF, and
propagate the age information from these images. This application demonstrates the use of NAF
in a setting where the neighbourhood is based on meta information, i.e. age. In this context,
we show the difference between NAF and appearance-based clustering in terms of regression
accuracy. We further analyse why NAF achieves better accuracy by examining the set of features
that are selected during training. The analysis shows that NAF automatically discovers features
that are in accordance with the known physiological effects of ageing.

Additionally, we present three further analyses: i) parameter analysis quantifying the effect
of design parameters on the final prediction accuracy, ii) comparison of the neighbourhoods
estimated by NAF and appearance-based clustering with the underlying “true” neighbourhood
(that could have been only determined if the semantic information was available at the test time),
and iii) quantitative and qualitative comparison of NAF with supervised-metric learning methods.
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3.1.1. Dataset
We use 414 T1-weighted brain MR images from the publicly available OASIS database,

which contains the age information for each subject [39]. Images are skull stripped, histogram
equalized, and aligned to a common reference frame via affine registration. For computational
efficiency, we use downsampled images at an isotropic voxel resolution of 2 mm.

3.1.2. Application-specific Settings

Distance ρ(·, ·): For the aim of age regression, it seems reasonable to define similarity between
two subjects in terms of their difference in age. Thus, for this application the pairwise distance
defining the neighbourhood structure is simply ρ(I, J) , |age(I) − age(J)|.

Database I: For the age regression experiment we perform leave-one-out tests, i.e. the set I
consists of 413 images for each test. We train NAF on these images based on the age-related
pairwise distance ρ(In, Im).

Feature space f(·): The feature vector for each image consists of intensity values at Q = 10000
randomly chosen voxels defined in the common reference frame. These intensity values are
extracted from smoothed version of the images. We apply a mean filter with a physical size of
12 mm in each dimension (leading to a structural element of size 6 × 6 × 6 voxels) to obtain the
smooth versions of the images.

NAF Parameters: For each test we train NAF using the corresponding I, f(·) and ρ(In, Im), ∀In, Im ∈

I. We empirically determined the parameters for the training phase as q = 103, F contains 300
trees, ∆ = 15 and the maximum depth for a tree is 15, which in the experiment was not reached
by any tree. Here, these parameters were not optimized. One could, however, consider using a
validation set to find the optimum set of parameters. In order to provide an insight on these pa-
rameters, further analysis on the influence of ∆ and number of trees is presented in Section 3.1.5
in more detail.

Regression Details: The regression of the subject age starts by extracting the features from a
test brain MR scan J. These features are used in the trained NAF to determine the k closest
neighbours of the image within the database as well as the affinity values w(J, ·) for these training
images (see Equation 5). Based on these the algorithm predicts the age using the weighted mean
as follows

ˆage(J) ,

∑
In∈Nk

F(ρ)
w(J, In) age(J)∑

In∈Nk
F(ρ)

w(J, In)
. (6)

3.1.3. Evaluation and Results
We evaluate the performance of NAF by comparing the real age of the test subject with the

predicted one. Figure 3(a) shows plots with the predicted age vs. real age for all 414 subjects
(result of leave-one-out tests) for four different values of k = 1, 7, 15, 413. On each plot we
report the r-value of the prediction as well as the root mean square error (RMS). The results are
very similar to those obtained with relevance vector machines (RVM) [40] and relevance voxel
machines (RvoxM) [19]. Both have been applied to a slightly smaller subset of the same database
in [19]. RVM achieves an RMS error of 10 years and the two variations of RvoxM achieve RMS
errors of 9 and 8 years.
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(a) Regression using NAF
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(b) Regression using kNNc for Unsupervised Clustering of Features

Figure 3: (a) Regression results obtained using the closest neighbours approximated by NAF: Graphs plot predicted
age vs. real age for each image in the database computed using leave-one-out style. From left to right the predictions
are obtained using k = 1, 7, 15, 413 closest neighbours respectively. In each plot the r value and the RMS error for
the regression is provided. (b) Same plots as above displaying regression results obtained using the closest neighbours
predicted using feature clustering .

In terms of computation times, the regression for a test subject, for the leave-one-out tests,
took on the average 2.8 seconds on an Intel Xeon processor running Matlab for 64-bits. The
training for each leave-one-out test took 43.9 seconds.

In order to understand the added benefits of our supervised approach over unsupervised clus-
tering, which is the current choice of researchers using NbA, we also perform age regression
using an appearance-based k-nearest neighbour clustering method (kNNc) and compare its per-
formance. Here, the neighbourhood is defined with respect to L2 distances between the entire
feature vectors f(I), i.e. ρkNNc(In, Im) , ‖f(In) − f(Im)‖2. In this case for each test image we ex-
haustively search for the k nearest neighbours of a test image J. The regression method is again
defined as a weighted mean by

˜age(J) ,

∑
In∈NkNNc

w(J, In) age(J)∑
In∈NkNNc

w(J, In)
(7)

w(J, In) ,
1

ρkNNc(J, In)
. (8)

Figure 3(b) plots the regression results obtained using the kNNc approach. The results obtained
by NAF show higher accuracy for all choices of k. Particularly, the difference at k = 413 when
all the training images are used for the regression is striking. The regression method using NAF
performs much better than the one using kNNc simply because it is able to use a neighbourhood
definition devised specifically for the task of age regression. NAF learns which features to use
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Age Predicted Age

Left: 67 29.8
Middle: 60 60.1
Right: 71 72.8

Age Predicted Age

Left: 26 56.2
Middle: 22 21.4
Right: 26 30.1

Figure 4: Examples demonstrating where the regression approach using NAF fails. Left: 6 different images from the
database. Right: Table presenting the predicted ages and the actual ages for the images displayed on the left. We note that
where the predicted age and real age differs are actually cases the images have characteristics of a different age group.

to approximate this neighbourhood and allows nearest neighbour retrieval specific to age regres-
sion. In contrast, the method using kNNc simply assumes feature distances are correlated to age
differences without any learning involved. Without knowing which features are relevant for age
regression, the images kNNc brings as nearest neighbours are similar in overall appearance but
not necessarily in age.

We would also like to provide some examples where the regression approach using NAF
fails. Figure 4 displays some images where the real age and the predicted age differs (left in each
row) along with examples from the same age groups where predicted and real ages agree (middle
and right). We note that in these failure cases the images have characteristics of a different age
group compared to the actual age of the subject.

3.1.4. Relevant Feature Maps
In the previous part we noted that NAF is able to achieve better performance than an un-

supervised kNNc due to the supervised feature selection. Here, we examine this result further.
Specifically, we determine the features NAF selects during training as the most relevant ones for
predicting age. Figure 5(a) shows the frequency of the selected features in the first three levels
of the trees throughout the forest. The values are normalized with respect to the total number
of nodes in these levels. Furthermore, for visualization purposes the raw frequency maps are
smoothed with a Gaussian kernel of standard deviation 2.0 mm. We observe that NAF uses
features extracted around the ventricles, prefrontal cortex, brainstem and hippocampal regions.
All these structures are known to show substantial change with aging [41, 42].

For comparison we also examine the features that are selected if we define a pairwise image
distance as the L2 norm of the feature difference between images, i.e. ρ(In, Im) = ‖f(In)− f(Im)‖2.
We train a NAF using this image distance and determine the most relevant features. We note
that this corresponds to unsupervised clustering with respect to the entire feature vector, which
kd-tree type algorithms would achieve [43, 31]. Figure 5(b) shows the same frequencies as (a)
for this modified approach. We see that almost all selected features are around the ventricles
where the largest intensity variation is present. This map is substantially different than what
NAF selects when age is used for supervision through the distance definition. The quantitative
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(a) Feature locations selected by NAF based on age distance

0

0.025

(b) Feature locations selected by NAF based on intensity distance

Figure 5: Feature Selection Frequency: Maps show the frequencies at which each feature is selected during the training
of NAF at the first three levels of the trees throughout the forest. (a) NAF is trained on the pairwise image distance
ρ(·, ·) defined on subjects’ ages. (b) NAF is trained on a distance defined as the difference between feature vectors of the
images, i.e. appearance distance. We note that the selected features are significantly different. NAF selects features from
anatomical areas that show substantial change with aging [41, 42] when ρ(·, ·) depends on the subjects’ age. When the
distance depends only on the appearance of images this is not the case.

results of the previous section reflect the effect of this difference in selected features on regression
accuracies.

3.1.5. Parameter Analysis
In this part, we analyse the effects of the most influential parameters of NAF on the regression

accuracy. For computational reasons, we perform leave-18-out tests in which case I consists of
396 images. Figure 6 (a) plots the RMS error for age regression vs. ∆ while the other parameters
are constant. The plots are given for different neighbourhood sizes k. We observe that for low
values of ∆ the RMS error is rather high due to overfitting. For high values of ∆ we also observe
an increase in RMS error due to decreasing discrimination power of NAF because of insufficient
learning. Lastly we observe that there is a large parameter regime between ∆ = 15 to ∆ = 30
where the accuracy of the regression method is stable.

Figure 6(b) plots the RMS error vs. number of trees. We observe that the increase in the
number of trees is beneficial until 100 trees and beyond the additional increase in accuracy is
rather small. In these plots we also observe the effect of k on the regression accuracy as well as
the stability of the system with respect to parameters. We observe that with high k values the
RMS errors are lower and the system is much more stable with respect to changing parameters.
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Figure 6: (a) Regression accuracy as a function of ∆. Figure shows overfitting effects at low ∆ and underlearning effects
at high ∆. (b) Regression accuracy as a function of the number of trees. Figure shows that more trees in general improve
accuracy however as the number of trees increase the marginal benefit of each additional tree becomes less.

3.1.6. Comparison with the True Neighbourhood
In the previous parts we evaluated the performance of NAF through regression accuracies.

Here, we compare the neighbours estimated by NAF to the neighbours computed using the orig-
inal distance ρ: the true neighbours. In reality, the computation of the true neighbours is not
possible in the test time because the meta-information is not available. However, to provide a
comparison we assume that the meta-information is available at the test time. We then compute
the true neighbours of a test image within the training database, denoted as Nk

real, and compare
this set with the ones estimated by NAF, NF(ρ) and by unsupervised kNNc, NkNNc. This compari-
son blends two different aspects. First, it measures how well image information is able to capture
the true neighbourhood defined by a non-image based information. Second, it measures how a
clustering algorithm performs to estimate the neighbours. Unfortunately, there is no trivial way
to separate these two aspects from each other. Nevertheless, the comparisons provide a feeling
on how close the neighbourhood estimates get to the true one.

In Figure 7(a) we plot the normalized size of the set of intersections between the true neigh-
bourhood and the estimated ones for different k, i.e. |Nk

real ∩Nk
F(ρ)|/k and |Nk

real ∩NkNNc|/k, where
| · | is the number of elements. The normalization is with respect to k, which yields a value be-
tween 0, no common element, and 1, all the elements are the same. The bars correspond to mean
statistics over 414 tests and errorbars are the standard errors. In Figure 7(b) we plot the absolute
difference between the average ages in the real neighbourhood and the estimated neighbourhoods
for different k values, where ¯ageA =

∑
I∈A age(I)/|A|. Once again the bars are mean statistics and

errorbars are standard errors. We observe in (a) that for small k the estimated neighbours differ
from the true neighbours. As k increase the agreement between the true neighbourhood and the
estimated one increases. In (b) we see that the mean ages in the estimated neighbourhood and
the true one are similar for all k. This suggests that even though the estimated neighbours differ
from the true neighbours, they are in the same age group, which is the important aspect for the
analysis. We also see both in (a) and (b) that NAF produces a more accurate estimate of the
neighbourhood compared to appearance-based clustering.
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Figure 7: Comparing the true neighbourhood with the estimates for the age-regression problem. (a) Normalized size of
the set of intersections between the true neighbourhood and the estimated ones with different methods. (b) Absolute dif-
ference between the average ages in the true neighbourhood and the estimate ones. The true neighbourhood is computed
using the distance ρ by assuming that the meta-information is available at the test time.

3.1.7. Comparison with Supervised-Metric Learning
As we mentioned in the introduction, NAF is not the only option for estimating the neigh-

bours of a test sample within a training data base, where neighbourhood is induced by an ar-
bitrary distance. Supervised metric learning framework provides the tools for this purpose as
well. Specifically, metric learning aims to reduce the dimensions of the feature space that data
points are originally represented in, such that the Euclidean distance in the reduced dimension
space approximates the neighbourhood structure between data points, which can be induced by
an arbitrary distance. This is achieved by a globally linear or locally linear transformation of
the original feature space. Metric learning methods use a training database to determine such
a transformation. For a test image, they compute its out-of-sample projection on the reduced
dimension space, where the distance between the test sample and the training samples provide
an approximation of the closest neighbours.

In this last part, we compare NAF with four supervised metric learning methods: Neighbor-
hood Components Analysis (NCA) [44], Maximally Collapsing Metric Learning (MCML) [45],
Large-Margin Nearest Neighbor (LMNN) [46] and Fisher’s Linear Discriminant Analysis (LDA).
We use the implementations of these algorithms in the publicly available1. Matlab Toolbox
for Dimensionality Reduction [47]. Our evaluation is based on the regression accuracy of the
neighbourhood-based approach that uses either of these algorithms.

In order to directly apply the available tools we convert age to categorical labels. For this
we tested different bin sizes: (1,2,5,10). Using each method we performed leave-one-out ex-
periments. In each experiment we first reduced the dimension of the initial feature space from
10,000 to 75 and 100 using PCA. Running the metric learning methods on larger input space
was not within our computational budget with the used implementation. Once again for each
method we performed tests with both PCA dimensions. Lastly, we used different output space
dimensions (10,20,50) for each algorithm and performed experiments for each value. Adding up
all the parameter settings, we performed 24 leave-one-out experiments with each algorithm.

1http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
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Figure 8: Regression accuracies obtained by different neighbourhood-based approaches using NAF and four supervised
metric learning algorithms. RMS scores are computed over 414 leave-one-out experiments for different neighbourhood
sizes k. For each supervised metric learning method there are two bars showing results corresponding to the best and
the worst parameter settings. We observe that NAF produces slightly better results than NCA, LMNN and MCML. LDA
performs slightly better than NAF for the best parameter setting.

For each test image we compute its nearest neighbours and predict the age using the weighted
mean as done previously for kNNc using Equations 7 and 8. This time instead of NkNNc the neigh-
bourhood found by the respective algorithm is used, such as Nk

NCA, and instead of ρkNNc(J, In) the
respective Euclidean distance in the reduce dimension space is used, such as ρNCA(J, In). Fig-
ure 8 plots the RMS errors over 414 tests for different methods and different number of nearest
neighbours used in the prediction process. For each supervised-metric learning method we show
two bars that present the RMS errors corresponding to the best and the worst parameter settings.
The plot shows that all of the algorithms perform similarly for this task. LDA and NAF produces
slightly better error scores than NCA, LMNN and MCML.

Besides the quantitative differences one very important difference between NAF and the other
methods is the way they use features. Supervised learning methods rely on determining a trans-
formation of the original feature space. A transformation, however, mixes the effects of different
features together. As a result, the dimensionality reduction comes at the expense of losing the
interpretability of the features used by the algorithm. On the other hand, NAF, inheriting the
advantages of the forest framework, uses the features directly without any transformations. As a
result, it provides us the opportunity to further analyze the selected features and interpret them.
This opens up new avenues and future research opportunities for tackling problems such as “can
we find the relevant anatomical locations for a certain disorder?”

3.2. Efficient Patch-Based Segmentation

In our second scenario, we build a patch-based segmentation system and apply it to multi-
organ segmentation of unregistered, varying field-of-view CT scans. Here, NAF is trained to be
able to retrieve semantically meaningful patches from a large database of manually annotated
images. The corresponding segmentations of the retrieved patches are combined into a final
segmentation of the whole scan. In contrast to previous patch-based approaches [2, 3] which
rely on appearance-based distances only, the difference here is that patch similarity is defined
employing a distance evaluated on the expert segmentation label maps.
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(a) Training Patches (b) Feature Extraction

Figure 9: (a) Training patches and the corresponding expert segmentations. We observe that some patches although
similar in intensity profiles are very different in the associated label maps. (b) For each patch features are extracted
which take into account the contextual information. For the patch denoted by a red square the features are intensity
values at voxels randomly chosen within the green rectangle.

3.2.1. Dataset
We use an in house database of 70 CT images with varying field-of-view. For each dataset a

manual segmentation is available including the following structures: heart, liver, spleen, l. lung,
r. lung, l. kidney, r.kidney, aorta, l. pelvis, r. pelvis, l. femur and r.femur. Figure 11 shows some
images from this database including their segmentations in the first two columns. For efficiency,
we downsample all images to an isotropic voxel resolution of 4 mm. We would like to emphasize
that the images do not need to be aligned for our method, and as can be seen in Figure 11, the
field-of-views of different images can be very different.

3.2.2. Application-specific NAF Details

Distance ρ(·, ·): For the task of segmentation it is sensible to define a distance between patches
based on the segmentations. In this experiment, the pairwise distance defining the neighbourhood
structure in the database is ρ(I, J) , ‖seg(I) − seg(J)‖0, where seg(I) denotes the label map for
the image I and ‖ · ‖0 is the L0 norm. This ρ(·, ·) simply counts the number of voxels between
I and J that have different labels. Figure 9(a) displays 9 image patches along with their manual
segmentations. These images justify our choice in using the segmentations to define ρ(·, ·). The
patches in the first row and the ones in the third row are very similar in terms of their appearance.
However, they are very different in terms of their underlying anatomy as can be seen by the
ground truth labels In contrast, the patches in the second row are very different in appearance, but
do not contain any structure of interest for this particular example. So in terms of segmentation
purpose they are similar. The distance ρ(·, ·) will reflect the similarity (dissimilarity) of these
cases during training.

Database I: We use 30 images for training and 40 for testing. We repeat the same experiment
twice using different sets for training and testing. In each experiment the training database I is
composed of 30,000 image patches along with their manual segmentations. These are obtained
by dividing the training images into overlapping patches. The sampling interval for each patch
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center is 32 mm and the size of the patch used for computing the pairwise distance is 68×68×68
mm3. The distance ρ(·, ·) is computed between each pair of patches.

Feature space f(·): The feature vector for each image patch consists of Q = 1500 intensity read-
outs of voxels defined in an area of 200×200×80 mm3 around the patch center. These voxels
are randomly chosen in a reference frame with respect to the patch center, and the same set of
local voxel coordinates are used for every patch. Figure 9(b) illustrates the patch and the area for
feature extraction. Intensities are obtained from smoothed version of the images. As before, we
apply a mean filter with a physical size of 12 mm in each dimension.

NAF Parameters: We train NAF using the corresponding I, f(·) and distance ρ(In, Im), ∀In, Im ∈ I
as explained above. The parameters are determined empirically and set to q = 500, F contains
150 trees, ∆ = 20 and the maximum depth for a tree is 17.

Patch-based Segmentation Details: The segmentation of a new image starts by dividing the image
into overlapping patches. The sampling interval for patch centers is 12 mm in each dimension.
The extracted patches used for generating the segmentations are of size 36×36×36 mm3. For each
test patch a feature vector is extracted and the set of 20 closest training patches within 30,000, i.e.
N20

F(ρ)(·), is determined using NAF. For each of the 20 candidates, we perform a local refinement
step using normalized cross correlation (NCC) within a search window of the same size as the
actual patches centered at the patch location. The location that yields the highest NCC is assigned
as the corresponding training patch for the test patch and its expert labels are used as a candidates
for the test patch. As individual voxels are considered in several (overlapping) patches, their final
label is obtained by majority voting. In addition to the overall segmentation, as a by-product, we
obtain a reconstruction of the tested CT images based the retrieved training patches. Figure 11
shows examples of the segmentation results using the patch-based NAF system, as well as the
reconstructed CT images.

In terms of computation times, the segmentation of a test image took between 7 to 30 minutes
for volumetric images of sizes varying from 100 × 100 × 60 to 100 × 100 × 170 voxels. The
training was done over night with most of the computation time spent on calculating the pairwise
distances between 30,000 patches.

3.2.3. Evaluation and Results
Figure 10 shows the per-organ mean and median Dice’s similarity coefficients (DSC) and

symmetric mean surface distances (SMSD) between the expert annotations and the segmenta-
tions obtained with NAF and two other baselines. Note, higher DSC scores and lower SMSD
correspond to higher segmentation accuracy. These values are obtained over 80 segmentations
from the two runs with different training and test splits.

In order to assess the quality of these results, we compare them with results obtained with
Classification Forests (CF) which operates as a voxel-based classification system [48]. The pa-
rameters of this baseline, such as tree depth, are optimized to obtain best possible results. The
features used for CF are identical to the ones used for NAF.

Furthermore, in order to show the added benefit of the supervised learning for nearest neigh-
bour retrieval, as performed by NAF, we also compare NAF’s results to a patch-based sys-
tem that uses unsupervised approximate nearest neighbour search (ANN) using kd-trees [43]2.

2Implementation available on http://www.cs.umd.edu/~mount/ANN/
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For the ANN approach, the nearest neighbours of a test image are determined based on the
full appearance-based feature vectors, i.e. the distance between two images is ρANN(In, Im) ,
‖f(In) − f(Im)‖2. Here, kd-tree construction uses the same features NAF is exposed to during its
training phase. The segmentation procedure for a test image is the same for both methods except
the nearest neighbour search.
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(a) Segmentation Results: Mean and median DSC
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(b) Segmentation Results: Mean and median SMSD

Figure 10: Segmentation scores for the three tested methods CF, ANN, and NAF. The bars correspond to per organ mean
and median DSC in (a) and SMSD in (b) summarized over 80 subjects. On most organs, NAF achieves the highest DSC
and lowest SMSD. The SMSD values are given in millimetres. Some visual examples are shown in Figure 11.

Quantitative evaluation confirms superior segmentation accuracy obtained by the patch-based
approach using NAF when compared to the two baselines. For the ANN approach which also
relies on patches, the difference is especially substantial for larger, homogeneous organs such
as the liver or lungs appearance-based retrieval can fail by confusing ambiguous patches from
different anatomical regions. In contrast, in these cases NAF is able to retrieve semantically
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meaningful patches with correct segmentation labels.
Focusing on smaller organs, such as kidneys or the elongated aortic arch, we observe the

limitations of voxel-wise classification techniques such as CF. The better performance of patch-
based systems is expected as spatial context is explicitly taken into account at test time, which
yields spatially coherent label maps. Although CF is trained using features exploiting spatial
context, at test time, each voxel is classified independently. The overall averaged mean DSC
scores across all organs are 0.77 (±0.10) for CF, 0.83 (±0.10) for ANN, and 0.86 (±0.07) for
NAF. The averaged mean SMSD scores are 4.04 (±2.72) mm for CF, 4.17 (±4.17) mm for ANN,
and 3.62 (±3.87) mm for NAF.

We also observe that for the case of lungs CF outperforms both approaches, which we believe
is due to lower spatial resolution of patch-based segmentation systems compared to voxel-based
systems.

Figure 11 displays some segmentation examples obtained with the three tested approaches
along with the test images, expert segmentations, and the reconstructed CT images, both for ANN
and NAF. The visual examples illustrate the behaviour of the different methods and confirm good
quality segmentation results for NAF. It is interesting to note that both for ANN and NAF the
image reconstructions are visually quite compelling, while the segmentation label maps reveal
the better anatomical consistency for patches retrieved by NAF. We believe these results support
the claim that NbA methods can benefit from supervision through the introduction of semantic
information in the neighbourhood definition.

4. Conclusions

We propose an efficient algorithm for tackling one of the critical problems common to all
neighborhood-based approaches for image analysis: approximating the neighborhood of an out-
of-sample image within a (training) database. Our method is very flexible as it can handle neigh-
bourhood structures induced by arbitrary distances, which can, for example, make use of se-
mantic information. The algorithm does not assume pre-existing descriptive compact features.
Instead, it automatically learns distance-specific features starting from high dimensional image
representations. As a result, it offers a powerful tool that can be used in diverse applications.

NAF is generic and can be integrated in existing systems. Furthermore, it also enables novel
applications. So far, the use of neighbourhood-based approaches in medical image analysis has
been limited partly due to limitations of unsupervised clustering methods for nearest neighbour
retrieval. NAF opens up new avenues in this respect by introducing supervised training for the
retrieval procedure. We believe our experiments demonstrate the potential of NAF, and that our
framework could become an important ingredient in other tasks, such as multi-atlas label fusion
and manifold-based techniques.

One of the open questions that has not been addressed here is the requirement to keep all the
training data at hand during testing. In the image-based age regression experiments presented
here, this was obviously not an issue because only the age information needed to be stored.
However, for the patch-based segmentation experiments, we assumed that the patch database
was available during testing. In general, this can be a limitation for applications using very
large databases or if there is a restricted memory budget. In fact, this is a persistent issue for all
nearest neighbour methods. However, we believe that the framework of NAF would allow for
possible application-specific solutions for this problem. Specifically, the leaf nodes, which cur-
rently store the indices to database images, could accommodate lower dimensional probabilistic
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models extracted from the database images falling into the same leaf. This could yield memory
efficient systems while making available the variability present in the database for the subsequent
analyses. Such schemes could be used to retrieve patient-specific a-priori models.

Another possible area of investigation is the relation between various decision forest vari-
ants, such as classification [49], regression [50], visual codebook generation [51] and NAF. We
already mentioned earlier that the use of decisions forests for clustering and manifold learning
can be seen as special cases of NAF. Other variants can also be linked to NAF by defining the
appropriate distances related to the task at hand. The important difference between NAF and the
standard forest approaches is that the latter require task-specific objective functions, for exam-
ple based on Shannon entropy in classification, or variance reduction in regression. NAF uses a
generic objective function which is the same for all applications. This results: 1) in a forest-based
framework that can be used for various applications without any modification on the algorithm
itself and 2) a more general framework that can accommodate different applications such as
patch-based segmentation, for which the objective function in the standard forest framework is
not trivial to define.
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Data Segmentation Results Image Reconstructions

Image Label Maps CF ANN NAF ANN NAF

Figure 11: Visual examples from segmentation experiments. Left: The test image and the manual segmentation label
maps. Middle: Segmentations obtained by CF, ANN and NAF-based system. Right: The by-product reconstructions of
the test image for ANN and NAF. Figures show improved accuracy and higher anatomical consistency for the NAF-based
system. We also note that the reconstructed CT images are reasonably close to the original test images. This demonstrates
that the closest patches found by NAF are not only consistent with respect to appearance but also consistent with respect
to the underlying label maps.
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