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Abstract

In real-world, high dimensional machine learning problems, such as imaging,
many of the available input features can be uninformative and dominate relevant
signals which hurts training of predictive models. This is a predominant problem
in medical imaging where inference is made on large volumetric image data.
Gaussian processes are generally well suited to medical imaging applications
as they work well when few training examples are available and provide vital
uncertainty information. However, kernel methods are often problematic in such
settings as commonly used kernel functions rely on distance metrics measured
across whole data points which can over-attribute importance to irrelevant feature
dimensions. We introduce patch kernels for Gaussian processes, a novel way to
exploit spatial information in data by breaking high-dimensional images down into
smaller subregions and calculating covariances across these localised regions. This
works well in imaging problems as it takes advantage of the spatial structure. We
demonstrate our method on two datasets: a synthetic digit classification problem
and age regression from magnetic resonance images of brains. Our results show
patch kernels outperform standard kernels when there is structural information to
be exploited in the input.

1 Introduction

Gaussian processes (GPs) are a powerful tool in machine learning that models arbitrary functions
while providing predictive probability distributions. Any machine learning problem that can be
formulated as inference on a function is a potential application for a GP [11]. As a prior over
functions GPs have been useful in many applications, including geostatistics [8], robotics [5] and
bioinformatics [6]. Having a fully Bayesian probabilistic interpretation means their uncertainty
measures can also be utilised, such as in [9] where GPs are used to generate samples of segmentations
and to provide uncertainty estimates.

However, GPs are ill suited to deal with problems where inputs are dominated by large quantities of
irrelevant features. That is, when the signal is a function of only a subset of the input features. An
example where this is a predominant problem is medical imaging, where the dimensionality (number
of pixels) is high but the areas of interest can be a small proportion of the whole image. Still, having
access to uncertainty information and working well with few training examples make GPs a prime
candidate for employment in such problems.
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Commonly used kernel functions are typically functions of Euclidean distance [11]. In such scenarios,
where the dimensionality is high and the image is dominated with uninformative pixels, these
distances make little sense. Conventional kernels do not take into consideration the underlying
structure of the image either, i.e. they do not utilise information such as which pixels are close
together in image space.

In this paper, we introduce patch kernels to deal with imaging problems where much of the image is
uninformative. The key idea is to compute covariances between image patches rather than across
the entire image, this allows separate hyperparameters to be optimised for separate subregions in
image space, allowing uninformative regions to be ignored and covariance to be measured more
consistently. We demonstrate the effectiveness of patch kernels on a synthetic dataset and on age
regression from human brain magnetic resonance images. Our approach works well with image and
volumetric data as it takes into consideration the underlying 2D or 3D structure during modelling.
Our method is a conceptually straightforward yet powerful solution to problems where generating
signals are correlated with specific locations in images.

2 Method

We describe patch kernels on volumetric data, though it applies to 2D data in a straightforward
manner. Given a volume X, the common approach to perform either GP regression or classification
is to flatten X into a 1D vector. However, all spatial information is lost by the flattening operation.
Instead, we break the volume down into several sub volumes (3D patches), calculating covariances
on each sub volume separately and combining them by summation. The idea behind this is that we
assume that informative features or structures are present in localised regions, as opposed to being
present across the whole image. This also holds for background noise, or uninformative regions. For
example, in brain magnetic resonance images, most of the volume is background and contains no
informative features, further we postulate that specific regions of the brain contribute to different
regression targets in varying amounts, hence covariance should depend on such regions in varying
quantities. A kernel function which is computed patch-wise then summed can be seen as a direct sum
kernel and allows for separate hyper-parameters, namely length scales and variances, for each sub
region to be optimised. This means regions which are more or less significant to the regression task
can have their influence increased or decreased.

Figure 1: Illustration highlighting the difference between whole image comparison on the left and
patch wise comparison on the right, where colour overlays in the image signify different hyper-
parameters for the different kernels

Once any valid kernel k(x,x′) is chosen, and the volume X has been broken down into P patches
{x1, . . . ,xP }, the covariance between two volumes X and X′ is defined as

∑
P k(xp,x

′
p). We

define patches by specifying patch size and strides, this flexible formulation allows for overlapping
patches, reducing the restriction on where structures of interest may lie in a volume. Since this is
just a formulation of a kernel, standard inference and optimisation techniques apply without need for
modification.

3 Experiments

We experiment on two datasets, a synthetic dataset of MNIST [10] digits embedded into square
background images, which consist of Gaussian noise, normalised to be in [0, 1], where each digit is
embedded so that it is always in the centre, and noise is generated separately for each embedding.
We take one in every 10 images from the MNIST dataset for practical considerations in order to
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increase the number of experiments that can be run, leaving 5500 training and 1000 test points. The
dataset is turned into a binary classification problem by separating odd and even numbers into two
classes. We use the scalable variational GP [7] for inference, using 200 inducing points in each
experiment, initialising inducing points by taking 200 random samples from the training data. The

Figure 2: Sample images of MNIST digits embedded into background images with percentage of
uninformative noise of 0%, 18.4%, 32.2%, 42.7%, 51% and 88.9% from left to right.

second dataset we demonstrate results on is the IXI dataset [2] with 570 brain MRIs and use SPM12
[3] to pre-process the data. All T1-weighted images had grey matter probability maps extracted using
SPM12 default settings and were registered to Montreal Neurological Institute (MNI) space. The
task is to regress patient age from these probability maps. Age regression has been shown to provide
a useful neuroimaging technique to study brain ageing in the context of brain disease [4]. For our
experiments the images are also down-sampled at a (3, 3, 3) rate, by taking the sum of values within
a block. This down-sampled volumes are of size 41 × 49 × 41 reducing memory load, so more
experimental results could be demonstrated. We validate results by using 2 fold cross validation.

We utilise GPflow [1] for all experiments. To benchmark our method, we vectorise images and
volumes and use the squared exponential (SE) kernel, a standard choice of kernel. We use this
same choice of kernel in our patch kernels. When measure the percentage of the image which is
uninformative we consider the 28× 28 MNIST image as informative, and the background image in
which is in embedded as uninformative. Figure 3 shows the effect of uninformative background
noise in the image on a GP using a the standard SE kernel. The figure illustrates how quickly
performance degrades as we increase the amount of uninformative features in the data. Increasing
the percentage of uninformative information past 60% causes the standard kernel to dramatically
drop in accuracy. However, the patch kernel consistently performs well, this is because patch kernels
allows for different length scales and variances for different regions. This means contributions to
covariance from uninformative regions can be reduced and regions where generating signals are can
be increased. As previously mentioned, this can be considered as a regularised form of ARD.
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Figure 3: Gaussian process classification accuracy vs. amount of corruption in the image. Where
patch sizes and strides of 7× 7 were used for benchmarking purposes.

We show the viability of patch kernels on images of size 84× 84, where noise accounts for 88.89%
of the image and GPs with standard kernels cannot find a non-trivial solution. To obtain an upper
bound for the performance of patch kernels we can use the optimal patch size and step size for this
setting. Using a 28× 28 patches and strides of 28 in both height and width, we know that we should
be able to recover our benchmark case. Not only is the patch kernel able to obtain good accuracy with
these settings, but we can further improve accuracy by using smaller patches, which is encouraging.
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Allocating different covariance contributions from different areas of the informative image seems to
help make better predictions. We also find experimentally that when patch sizes become too large
the accuracy drops: Despite the signal being present in the patch, noise still dominates. Unlike with

Table 1: Accuracy of patch kernel GPs with different patch and stride values

Patch size Step size Accuracy

28 28 88.2 %
14 14 95.2 %
56 28 55.1 %

synthetic data, in real-world applications we do not know a priori what the optimal patch and stride
sizes should be. Figure 4 shows results from a grid search over the space of parameters, where colour
values correspond to the mean absolute error obtained for age regression on the IXI dataset for the
different parameter settings. Table 2 gives a more detailed breakdown of results shown in the top left
of the figure, where the best results are found. We show clearly that patch kernels outperform the
standard SE kernel.

Table 2: Mean absolute error on IXI dataset

MAE

Standard SE kernel 5.547
Patch Kernel (patch size 2, stride 2) 5.415
Patch Kernel (patch size 4, stride 2) 5.027
Patch Kernel (patch size 4, stride 4) 4.939
Patch Kernel (patch size 8, stride 2) 5.119
Patch Kernel (patch size 8, stride 4) 5.084
Patch Kernel (patch size 8, stride 8) 5.385

Patch Kernel (patch size 12, stride 4) 5.198
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Figure 4: Mean absolute error for GPs using patch kernels, with different patch and stride values

4 Discussion

We propose the use of patch kernels for image to number regression and classification, postulating
that informative image features are found in localised regions. Showing experimentally that when
generating signals are localised patch kernels outperform standard kernels and that taking advantage
of spatial information in image tasks is very useful. Our work opens the door to more research in the
field of applying GPs to imaging tasks, such as image-based diagnosis, that would benefit from a
fully Bayesian model with uncertainty estimates, an important property in clinical applications.

4



References
[1] Gpflow. https://github.com/GPflow/GPflow.

[2] Ixi dataset. http://brain-development.org/ixi-dataset/.

[3] Statistical parametric mapping. http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/.

[4] J. H. Cole, R. Leech, and D. J. Sharp. Prediction of brain age suggests accelerated atrophy after
traumatic brain injury. Annals of Neurology, 2015.

[5] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(2):408–423, 2015.

[6] P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence. Gaussian process modelling of latent
chemical species: applications to inferring transcription factor activities. Bioinformatics,
24(16):i70–i75, 2008.

[7] J. Hensman, A. G. d. G. Matthews, and Z. Ghahramani. Scalable variational gaussian process
classification. In Proceedings of AISTATS, 2015.

[8] D. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand.
Journal of Chemical, Metallurgical, and Mining Society of South Africa, 1951.

[9] M. Lê, J. Unkelbach, N. Ayache, and H. Delingette. GPSSI: Gaussian process for sampling
segmentations of images. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351:38–46, 2015.

[10] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[11] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

5

https://github.com/GPflow/GPflow
http://brain-development.org/ixi-dataset/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

	Introduction
	Method
	Experiments
	Discussion

