
Fast Multiple Organ Detection and Localization in
Whole-Body MR Dixon Sequences

Olivier Pauly1, Ben Glocker2, Antonio Criminisi2, Diana Mateus1, Axel Martinez
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Abstract. Automatic localization of multiple anatomical structures in medical
images provides important semantic information with potential benefits to diverse
clinical applications. Aiming at organ-specific attenuation correction in PET/MR
imaging, we propose an efficient approach for estimating location and size of
multiple anatomical structures in MR scans. Our contribution is three-fold: (1)
we apply supervised regression techniques to the problem of anatomy detection
and localization in whole-body MR, (2) we adapt random ferns to produce multi-
dimensional regression output and compare them with random regression forests,
and (3) introduce the use of 3D LBP descriptors in multi-channel MR Dixon se-
quences. The localization accuracy achieved with both fern- and forest-based ap-
proaches is evaluated by direct comparison with state of the art atlas-based regis-
tration, on ground-truth data from 33 patients. Our results demonstrate improved
anatomy localization accuracy with higher efficiency and robustness.

1 Introduction
Following the success of combined PET/CT, the possibility of combining PET with
MRI has gained increased interest, as significant advantages are expected compared
to PET/CT for many imaging tasks in neurology, oncology and cardiology [1]. How-
ever, before its introduction in the clinical practice, a technical challenge impacting the
quality of PET/MR imaging needs to be solved: the attenuation correction of 511 keV
photons according to the radiodensity of the tissues. While in PET/CT [2], radioden-
sity information provided by CT at X-ray energies can be converted into attenuation
information, MR does not provide any information on the tissue density. Therefore,
methods have been investigated to generate an attenuation correction map directly from
MR. For brain imaging, atlas-based solutions using registration were evaluated in [3,4].
For whole-body imaging, different approaches based on the classification of tissues into
4 classes (background, lungs, fat, and soft tissue) have been investigated, for instance
in [5]. While previous methods showed promising results for attenuation correction of
whole body imaging with PET/MR, they propose only a coarse tissue classification, not
accounting for organ-specific attenuation and for the attenuation introduced by bones.
To further improve the quality of whole-body PET data reconstruction, we aim at gener-
ating organ-specific attenuation information directly from MR. Therefore, the position



of the organs which impact the attenuation of photons need to be known. This paper
presents an approach for simultaneously localizing multiple organs in multi-channel
whole-body MR. It builds upon state-of-the-art non-linear regression techniques. We
adapt random ferns for regression and compare them to random regression forests. Ex-
periments on 33 patient scans demonstrate better performance than atlas-based tech-
niques in terms of accuracy, speed, and robustness.

2 Related Work

Classical object detection algorithms are based on sliding windows and classifiers whose
role is to predict whether a voxel belongs to the object of interest or not. In [6], Vi-
ola and Jones introduced a fast detection approach based on a cascade of classifiers
trained using Adaboost. Built as a succession of classifiers taking sequentially more
and more features into account. This approach achieved impressive performance for
real-time face detection. In medical applications, there has been an increasing interest
in regression-based solutions for organ localization. Since the human body consists of
a specific arrangement of organs and tissues, it can be expected that voxels, based on
their contextual information, can predict the surrounding anatomy. For instance, if the
neighborhood of a voxel shows an appearance which is typical of heart tissue, besides
the position of the heart, this voxel can provide an estimate of position of the nearby
lungs. In [7], Zhou et al. introduced an approach based on boosting ridge regression
to detect and localize the left ventricle (LV) in cardiac ultrasound 2D images. There,
the learned function predicts the relative position, scale and orientation of the LV based
on Haar-like features computed on 2D images. Impressive results are demonstrated on
echocardiogram sequences. To detect and localize the heart chambers in 3D cardiac
CT, Zheng et al. proposed in [8] an approach called marginal space learning (MSL). To
break down the complexity of learning directly in the full 3D similarity transformation
space, the authors demonstrate that training a classifier on projections of the original
space effectively reduces the search space. Using this idea, they build a cascade of clas-
sifiers based on probabilistic boosting tree (PBT) to predict first the position, then the
position-orientation and finally the full 3D pose. In [9], the authors push this idea fur-
ther to non-rigid marginal space learning using statistical shape models. Although these
approaches have shown very good performance on CT scans, building such a cascade of
classifiers is a computationally intensive learning procedure which requires large train-
ing sets. In this paper we avoid intensive training by building a single regressor predict-
ing simultaneously the position of multiple organs. In [10], Criminisi et al. proposed a
regression approach based on random forests for the localization of organs in 3D CT
scans. The authors showed that their method achieves better performance than atlas
registration, and this, while benefiting from fast training and testing. While in [10], the
authors could rely on absolute radiodensity values provided by CT, here, we deal with
MR images which provide only relative values and suffer from field inhomogeneities.
To tackle this challenging problem, we adapt the regression forest framework by intro-
ducing 3D LBP descriptors. Additionally, we implement a random ferns approach [11]
and compare it with forests. Both regression techniques are evaluated and compared to
an atlas-based registration approach.



Fig. 1. (Left) Each voxel predicts its relative displacement to all organ bounding boxes
represented here as a green box. Multi-scale textural information is extracted using
LBP-like feature representation computed over 3D cuboidal regions. (Right) 1D regres-
sion example: data samples in red, blue lines represent the partition built over the input
feature space. In each cell, simple linear models (in green) are fitted to the points. Their
combination over the full space results in a complex non-linear predictor.

3 Proposed Method
This section describes details of our organ detection and localization approach. First,
we cast this problem as a regression task. Second, we introduce our feature representa-
tion based on water and fat channels computed from MR Dixon sequences. Third, we
present regression forests and explain how to adapt random ferns for regression. Finally,
we show how to combine voxel predictions to localize all organs of interest in one shot.

3.1 Problem Statement

In our framework each voxel votes for the relative position of all organs of interest. The
individual votes will produce very noisy predictions. But the probabilistically weighted
combination of all votes will produce an accurate output (see Fig.1). Since the relative
displacements we want to predict are continuous values, we use a regression paradigm.
In the following, we introduce new features based on the fat and water MR Dixon
channels, and then present a new non-linear regression approach based on random ferns.
Next, we introduce the general problem of organ localization as a regression task.
Input Space: Formally, let us consider the water W and fat F channels computed from
MR Dixon sequences defined by the two intensity functions I(W ), I(F ) : Ω → R,
Ω ⊂ R3 being the image domain. While x = [x, y, z] represents a voxel location in this
domain Ω, Ψ(I(W ), I(F ),x) = X denotes a function mapping the voxel location to a
feature space according to both intensity functions I(W ) and I(F ). The role of feature
representation X is to encode contextual information in the neighborhood of location x
computed using I(W ) and I(F ). X is the input of our regression function.
Output Space: Let us now consider a set ofK organs of interest contained in bounding
boxes O = {O1, · · · , Ok, · · · , OK}. Each bounding box Ok is represented by a vector
Ok =

[
x0k, y

0
k, z

0
k, x

1
k, y

1
k, z

1
k

]
. The relative displacement vk between voxel location

x and bounding box Ok is parametrized as:

vk =
[
x0k − x, y0k − y, z0k − z, x1k − x, y1k − y, z1k − z

]
(1)



We denote by V = [v1, · · · ,vk, · · · ,vK ] the vector containing relative displacements
between x and all organs of interest. V is the output of our regression function. On
Fig.1, these relative displacements between the point x and the liver bounding box are
represented by the red arrows. Here, we consider the following organs: head, left lung,
right lung, heart and liver.
Regression: We assume a training set

(
X(n),V(n)

)N
n=1

computed over a set of N pa-
tient MR volumes. We could think of modeling the posterior distribution p(V|X) link-
ing the input and output spaces. However, in such high-dimensional feature spaces,
modeling the posterior distribution directly is very difficult. To break down the com-
plexity of this problem, we can first subdivide the input feature space by building a
partition P over it. Indeed, by subdividing the feature space, we obtain cells containing
data points which are easier to model even with simple mathematical models such lin-
ear or constant functions. As illustrated by the low-dimensional toy example on Fig. 1
(right), the combination of these models over the whole partition results then in a com-
plex non-linear model. Formally, P is defined as an ensemble of T cells P = {Ct}Tt=1.
With P given, we propose to model the posterior in each cell Ct as follows:

p(V|X ∈ Ct,P) = Nt(X|µt, Σt) (2)

whereNt is a multivariate Gaussian distribution whose parameters are estimated during
the training phase. In fact, this choice permits to model the full distribution as a piece-
wise Gaussian distribution. In contrast to fitting a Gaussian mixture model, partitioning
is here performed in the input feature space and not in the output space. Moreover, in
the case of trees, this partitionning is performed hierarchically. Based on this, we can
model the probability distribution of V over the full feature space according to partition
P as:

p(V|P) =
T∑

t=1

p(V|Ct,P)p(Ct) (3)

Clearly, the quality of the posterior approximation depends on the partition P . If its
number of cells T is low, then the posterior approximation will be very rough. On the
other hand, if T is high, each cell will include few training points. In this case, the
partition P tends to overfit the training data and suffers from poor generalization. In
[12], Breiman demonstrates that replacing a single partition P with an ensemble of in-
dependent random partitions {Pz}Zz=1 leads to an ensemble regressor achieving better
generalization. In this paper, we apply regression forests and adapt random ferns for re-
gression to construct multiple independent partitions {Pz}Zz=1. The posterior estimates
from the different partitions of the ensemble are then combined using averaging. Fi-
nally, we can estimate in one shot the position of all organs of interest contained in
variable V̂ using the mathematical expectation: V̂ =

∫
V
Vp(V)dV. Before going into

the details of our regression techniques in section 3.3, let us first describe the feature
representation we use in the problem of organ localization in MR Dixon sequences.

3.2 Feature Representation

As described in [13], MR Dixon imaging techniques are based on the one shot acqui-
sition of a so-called “in phase” scan where water and fat signals are in-phase and an
“opposite phase” scan where water and fat signals are 180◦ out-of-phase. Using these 2



scans from the same patient, water and fat signals can be separated to construct a water
I(W ) and a fat I(F ) channel. Since these 2 channels are perfectly registered, we propose
to take advantage from their complementary nature and design a feature representation
based on both water and fat information. While in CT intensity information is directly
related to the underlying tissue distribution, MR intensity information is not absolute
and suffers from variability between different images. For this reason, we will not rely
on intensities as in [10], but on textural information by employing Local Binary Pat-
terns (LBP) [14]: we propose to extract textural context variations at different scales
(see Fig. 1). Let us consider a 3D region Rs

x at scale s centered on voxel location x

and a set {Ns,q
x }

Q
q=1 of Q 3D asymmetric cuboidal regions having different sizes, ori-

entations and offsets in the neighborhood of x. Using this, we can extract two binary
feature vectors X(W )

s and X
(F )
s from the two channels where each entry is the result of

the following binary test comparing average intensities within regions Ns,q
x andRs

x:

X(i)
s [q] =

1

|Ns,q
x |

∑
x′∈Ns,q

x

I(i)(x′) <
1

|Rs
x|
∑

x′∈Rs
x

I(i)(x′), (4)

and this, ∀q ∈ {1, · · · , Q} and i ∈ {W,F}. Repeating this operation at several scales
results in two feature vectors X(W ) and X(F ) describing the multi-scale textural context
for both channels in the neighborhood of voxel location x. Since X(W ) and X(F ) are
binary vectors, they can be further encoded to reduce their dimensionality. Finally, they
are concatenated in one feature vector: X =

[
X(W ), X(F )

]
.

3.3 Ensemble Regression Approaches

This section explains how to use forests and ferns to efficiently partition the input data.
While regression forests have been used for detecting organs in CT [10], there exists
little work on ferns-based regression. In [15], Dollar et al. use a ferns-based regressor
in a cascade fashion for pose detection of objects in 2D images. In contrast, we use a
single ensemble regressor.
Forests and ferns: Random forests [12] are constructed as an ensemble of independent
random trees. Each tree is a set of decision functions that split feature vectors at each
node towards the left or the right branch. Random ferns, later introduced by Özuysal et
al. [11], are an ensemble of constrained trees. While a tree applies a different decision
function at each node, a fern systematically applies the same decision function for each
node of the same level. Results of these random tests are finally stored as binary values.
Ferns benefit from a more compact and simple structure for an accuracy that is similar
to those of random trees [11]. In fact, while 2(N−1) operations are needed to grow a
tree of 2N leaves, only N operations are needed to grow a fern of 2N leaves.

Let us now describe these partitioning approaches more formally. We denote by

F =
{

F(z)
}Z

z=1
an ensemble of trees or ferns. Each element of this ensemble induces

an independent partition P(z) =
{
C(z)1 , · · · , C(z)T

}
of the input feature space. Each tree

or fern F(z) is defined as a set of L nodes, each node being equipped with a linear func-
tion fl and an associated threshold τl, l ∈ {1, · · · , L}. The output of evaluating a pair
(f

(z)
l , τ

(z)
l ) on a visual feature vector X is binary, that is f (z)l (X, τ

(z)
l ) : X 7→ {0, 1}.

While in a tree, the output value denoted by b(z)l decides whether X gets pushed towards



the left or the right branch, in a fern, X is evaluated at all nodes. The corresponding out-
puts are then stored in binary vector b(z) = [b

(z)
1 , . . . , b

(z)
l , . . . , b

(z)
L ]>. In the end, while

X is pushed through the whole tree until it reaches a leaf (which is a cell C(z)t of the
partition P(z)), in a fern, the full vector b(z) encodes the cell index of the partition
where the vector falls.
Training/Testing: During the training of a fern, the whole training data is used at each
node. This is in contrast to trees where only a subset is considered at each node. If
we consider a training set

(
X(n),V(n)

)N
n=1

computed over a set of different patient
scans, all feature vectors are pushed through the ferns ensemble and fall into the cells
of the different partitions. Finally, the parameters of each Gaussian can be estimated for

each cell C(z)t using the subset
{
V(n)|X(n) ∈ C(z)t

}N

n=1
of training data that fell into

C(z)t . In the current paper, we do not use optimization in the construction of our ferns
regressor, i.e. the linear functions and their associated thresholds are chosen randomly.
While this permits to have a very fast training procedure, it provides independency from
the training set. This can be an advantage for instance in the case of noisy data. Once
the training has been performed, all node functions and thresholds are frozen. During
the test phase, an unseen data point X is pushed through the whole ensemble until it
reaches a cell in each partition. Then, each cell contributes to the final prediction using
its stored Gaussian model as seen in section 3.1. Next, we describe how to combine the
predictions to localize all organs of interest.

3.4 Anatomy localization

Let us consider the water I(W ) and fat I(F ) channels of an unseen patient. From
both channels, a set of feature vectors

{
X(n)

}N
n=1

is extracted from voxel locations{
x(n)

}N
n=1

. By pushing this set of feature vectors through the regression ensemble,

predictions
{
V̂(n)

}N

n=1
are computed as described in section 3.1. They correspond

to the relative displacements V̂(n) = [v̂1, · · · , v̂k, · · · , v̂K ] between each location
x(n) =

[
x(n), y(n), z(n)

]
and all organ bounding boxes O = {O1, · · · , Ok, · · · , OK}.

The bounding box of organ Ok can be finally estimated as follows:

Ok =
N∑

n=1

wn

(
v̂
(n)
k +

[
x(n),x(n)

])
(5)

where each wn weights the contribution of voxels according to the confidence of their
predictions. Note that

∑N
n=1 wn = 1. In this paper, we discard contributions having

low confidence and perform averaging on the remaining predictions.

4 Experiments and Results

In this section, we compare our approaches based on regression forests and random
ferns with the current state-of-the-art multi-atlas registration.
Data: Our dataset currently consists of scans from 33 patients who underwent a 3-Tesla
whole-body MR Dixon sequence. All patients have cancer (mostly neck, lung, liver can-
cer) and show a high variability in their anatomy partially due to their disease. For the



detection and localization of organs, we use the water and fat channels. In each scan,
we manually delineated the bounding boxes for following organs: head, left lung, right
lung, liver and heart. The size of the volumes are 192×124×443 and the pixel spacing
is 2.6× 2.6× 2.6 mm.
Regression approach: 100 runs of cross-validation experiments have been conducted
where each experiment consists of a training phase on 20 patients chosen randomly and
a test phase on the 13 remaining patients. For both forests and ferns, all parameters
(number of trees/ferns and tree depth/number of nodes) have been tuned by performing
grid-search within the same range for both techniques. Note that node optimization has
been performed for random forests based on information gain (cf. [10]). For prediction,
each fourth pixel is used and described using 3D LBPs computed over 26 cuboidal re-
gions chosen at 3 different scales.
Multi-atlas registration: 100 runs of cross-validation experiments have been performed.
Each experiment is defined as follows: a set of 20 patients are chosen randomly as
multi-atlas database and 1 patient is randomly chosen as test case. All 20 patients from
the database are registered to the test patient using affine registration. Then, using the
ground truth position of the bounding boxes of the test patient (which is not available
in reality), we evaluate the theoretical lower and upper bounds of the error by using
the patients in the database who provide the lowest and highest localization error. The
mean error is computed over the whole database.
Results: Results reported on Tab.1 shows that we achieve an accuracy which is better
than the “best case” atlas accuracy, while providing an increased robustness. Taking a
look at the localization error per organ, one can notice that the lowest error for our ap-
proach is achieved for the localization of the head, which is due to the fact that the head
is surrounded by a lot of air which makes it easier to localize. While the heart shows
second lowest error, lungs and liver were more difficult to localize. This is mainly due
to the high inter-patient variability of the shape of these organs. The best results were
obtained with 14 ferns/6 nodes for random ferns, and 6 trees/depth of 8 for regression
forests. On a laptop with MATLAB 64 Core Duo 2.4 GHz, the training/testing time on
20/13 patients is 0.7/0.5 s for random ferns. Random Forests need 25/1 s. Concerning
atlas registration, each single affine registration needs 12.5 s. To conclude, our approach
provides a fast and robust solution for organ detection and localization and thus fulfills
our requirements towards organ-specific attenuation map.

5 Conclusion

Our contribution is a supervised regression approach based on random ferns and random
forests to detect and localize in one shot multiple organs in whole-body multi-channel
MR images. Experiments conducted on a dataset of 33 patients show that our approach
achieves an accuracy which is better than atlas-based methods, while providing higher
robustness (lower uncertainty) and faster training/prediction times. Furthermore, this
approach can be also useful to integrate semantic information i.e. incorporating organ
labels in further applications such as registration, image navigation or image retrieval. In
future work, we plan to investigate the online performance of the proposed approach to
enable a fast updating of our organ localization system, and then we will move towards
the construction of organ-specific attenuation correction maps.



MEAN LOCALIZATION ERRORS (mm)
Organs Head Left lung Right lung Liver Heart Overall

Random ferns 9.82± 8.07 14.95± 11.35 16.12± 11.73 18.69± 13.77 15.17± 11.70 14.95± 11.33

Random forests 10.02± 8.15 14.78± 11.72 16.20± 12.14 18.99± 13.88 15.28± 11.89 15.06± 11.55

Atlas lower bound 18.00± 14.45 14.94± 11.54 15.02± 13.69 18.13± 16.26 13.31± 11.03 15.88± 13.40

Atlas upper bound 70.25± 34.23 60.78± 29.47 63.95± 30.13 70.59± 32.88 60.38± 28.90 65.19± 31.12

Atlas Mean 35.10± 13.17 30.41± 11.39 29.85± 12.62 31.74± 13.49 29.82± 12.23 31.38± 12.58

Table 1. Comparative results: Compared to atlas-based method, our approaches based
on random ferns and forests achieve better accuracy and lower uncertainty.
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