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Abstract

This paper presents a novel method for cortical surface
atlasing. Group-wise registration is performed through a
discrete optimisation framework that seeks to simultane-
ously improve pairwise correspondences between surface
feature sets, whilst minimising a global cost relating to the
rank of the feature matrix. It is assumed that when fully
aligned, features will be highly linearly correlated, and
thus have low rank. The framework is regularised through
use of multi-resolution control point grids and higher-order
smoothness terms, calculated by considering deformation
strain for displacements of triplets of points. Accordingly
the discrete framework is solved through high-order clique
reduction. The framework is tested on cortical folding
based alignment, using data from the Human Connectome
Project. Preliminary results indicate that group-wise align-
ment improves folding correspondences, relative to regis-
tration between all pair-wise combinations, and registra-
tion to a global average template.

1. Introduction

Spatial normalisation of cortical surfaces is a vitally im-
portant processing step for a wide range of neuroimag-
ing studies, including population level comparisons of cor-
tical shape, task activations, or functional and structural
connectivity. In particular, surface based processing and
co-registration of functional MRI (fMRI signals) has been
shown to significantly improve the detection of brain activa-
tions by boosting signal-to-noise; impacting on the sensitiv-
ity of task-based localisation studies and improving cortical
parcellation frameworks.

Current methods for surface atlasing typically perform
registration to a single population average template. For
example, the popular FreeSurfer framework for spherical
projection and alignment of cortical surfaces generates an

initial template through selection of one subject to act as an
initial reference. This is the target of a stage of highly con-
strained, cortical folding driven, non-rigid alignment, after
which point all surfaces and features are averaged and the
process of registration and averaging is iterated until con-
vergence. The FreeSurfer (fsaverage) template is widely
adopted, used by [28] within a diffeomorphic alignment
framework, and in [26] it is adapted to force hemispheric
symmetry. Further, [5, 22] adapt the FreeSurfer framework
to align fMRI timeseries and functional connectivity fea-
tures respectively. In each case the registration target is the
population average.

However, there is growing evidence that brain topology
is not consistent, even across healthy populations of fixed
age. For example, major cortical folding patterns, such
as the cingulate, have been shown to vary with regards to
the number of folds and degree of branching [26]. Further,
the relative placement of different functional activations has
been shown to vary [10]. Methods that register to a common
target, bias the resulting average to the reference anatomy,
and ensure only features that are common across the whole
dataset are consistently aligned.

For this reason, several methods have been proposed to
reduce bias by performing registration for all pairwise com-
binations [3, 16, 18, 27]. For example, [3] generate neona-
tal cortical surface atlases via pairwise alignment of cor-
tical folding data using spherical alignment and average
all pairwise transformations, according to the approach in
[23]. [17] improves on an initial pairwise spherical tem-
plate, estimated from spherical harmonic alignment of land-
mark curves [18], by minimising ensemble entropy across
the group. Whereas, [27] performs group-wise registration
in two stages, first performing pairwise spectral embeddings
of all cortical surface shapes using the approach in [16];
then performing a joint embedding using correspondences
from the pairwise stage to anchor the embedding.

Spectral embedding methods are also used for func-
tional alignment by [10, 14]. These methods have many



advantages in terms of being fast and (under certain con-
straints) diffeomorphic [16]. However, because of the lack
of ground-truth understanding of how cortical folding re-
lates to functional connectivity [2] they are typically only
applied to one type of feature set at a time. Further, embed-
ding implies no spatial regularisation of the solution; which
can lead to spatially distant points on the cortical surface be-
ing related through long distance correlations between fea-
tures. In [27] this is addressed through edge-based smooth-
ing of the pair-wise connections.

In this paper we take a different approach and take inspi-
ration from volumetric image registration frameworks that
approach simultaneous group-wise alignment within a spa-
tially constrained deformation model [4, 25]. In particu-
lar, adopting the discrete optimisation approach proposed
by Sotiras et al [24] in which group-wise alignment of 2D
image slices is implemented using a global entropy cost. By
contrast, we propose a new group-wise deformation model
that seeks to align features representative of the cortical sur-
faces (such as folding or function), whilst simultaneously
minimising the rank of the data set; the goal is to find the
most compact representation, even in the face of structural
or functional variability across data sets.

Registration is implemented using a modification of the
discrete spherical alignment approach MSM [20], inspired
by DROP [8] a discrete optimisation approach for Free-
Form Deformations of volumetric image grids. Like DROP,
MSM has advantages in terms of: reduced sensitivity to
local minima [9]; and a modular optimisation framework
which means that any combination of similarity term and
regularisation framework can be used. This has advantages
for cortical alignment as it means any type of features or
combination of features, that can be projected to the surface,
can be used to drive the alignment; provided an appropriate
data cost can be found. Accordingly MSM has been applied
to a wide variety of feature sets including, cortical folding
[3], myelin [20] resting state functional MRI (fMRI) [20],
retinotopic maps [1].

The full group-wise framework incorporates three terms:
a pairwise cross-correlation term to encourage alignment of
common features on the surfaces of subjects whose topol-
ogy is constant; a quartet-based global low rank penalty
to encourage correspondences between topologically incon-
sistent feature sets; and a triplet-based smoothness term to
encourage smoothness of the warp. In the next section we
describe the discrete framework. As proof of concept, the
proposed model is tested on cortical folding driven align-
ment of the 10 unrelated subjects available from the Human
Connectome Project.

2. Group-wise Discrete Registration Model
Within the proposed group-wise surface alignment

framework there exist n cortical surfaces Si each projected

to a sphere through the procedures outlined in [7]. These
surfaces are associated with Ii feature sets which can be any
combination of features describing cortical folding, func-
tional activations, correlates of cytoarchitecture, or struc-
tural connectivity. The optimisation seeks transformations
Ti, which simultaneously map datasets {Si:Ii} onto a com-
mon reference frame. The reference mesh is represented by
a regularly sampled sphere S0, with counterpart low resolu-
tion reference control grid G0.

The multi-resolution deformation model is built upon
use of n sets of triangulated, spherical, control-point grids
Gi (one for each subject: Figure 1). Displacements of
the individual control point grids follow the framework de-
scribed in [20]. At each iteration, the points pi are con-
strained to move to a new, discrete set of locations on the
surface. These are determined through regular sampling of
the surface following the scheme in [20]. The associated
displacements are described by rotation matrix Rlpi , where
end point is indexed using a label l(pi), and Rlpi rotates
each control point pi into position over the label. From this
the optimal deformation is then solved as a multilabeling
problem using discrete optimisation [20, 8]

Registration is optimised so as to simultaneously im-
prove similarity for all pairwise comparisons between fea-
ture sets Iki , I

k
j . These represent patches of data at the

respective position k on the low resolution reference G0,
where all features are compared following barycentric re-
sampling to the reference grid S0. Transformations for
each point xi from Si are composed as T t

i (xi) = xi +
T t−1
i (xi) + Di(xi) where Di(xi) =

∑
pi∈Fi(xi)

η(|xi −
pi|)Rlpipi, such that η(.) is a barycentric interpolation
function that constrains each data point to move with the
control-point grid triplet Fi(xi).

The optimisation has three terms: a pairwise similarity
term and two penalty terms seeking a) minimisation of the
rank of the data, through reduction of nuclear norm for the
full group data matrix (Mk); and b) regularisation of each
control grid warp by penalising the strain of the deformation
for each control point grid face triplet. The full framework
is described in equation 1, with each term being described
in more detail below:



Figure 1. An overview of the group registration framework: A)
Data Ii associated with each high resolution spherical mesh Si is
subdivided according to the control point face it falls within. B)
Each control-point (red, green and blue dots) samples data from
all neighbouring faces, and chooses from a finite choice of end
points (black crosses) for each displacement. C) Between-subject
control-point neighbourhoods are found by tracking closest points
relative to each reference grid position k.

E(T1◦G1, ....Tn◦Gn) =
∑
i∈n

∑
p∈Gi

∑
q∈

(N(p)\Gi)

Vpq(lp, lq)

︸ ︷︷ ︸
pairwise between mesh similarity term

+
∑
i∈n

∑
p∈Gi

∑
qr∈

(N(p)∩Gi)

λVpqr(lp, lq, lr)

︸ ︷︷ ︸
triplet warp regularisation term

+
∑
p∈Gi

∑
qrs∈

(N(p)\Gi)

αVpqrs(lp, lq, lr, ls)

︸ ︷︷ ︸
low rank quartet similarity term

(1)

2.1. Pairwise Similarity Comparisons

The first term in the objective function seeks to optimally
match surface features between all pairwise combinations
of surfaces. It is estimated from cross-correlations between
overlapping patches of data Ii, Ij relative to position k in
the reference space:

Vpk
i q

k
j

=
∑

xi∈F (p)

∑
xj∈F (q)

Φ(|Ti(xi)− Tj(xj)|)×

(Ii(Ti(xi))− Īi
k
)(Ij(Tj(xj))− Īj

k
)

σk
i σ

k
j

(2)

Each patch Iki represents the overlap between surface points
(xi) and control-point-grid triplets F (pi). Between mesh

neighbours q ∈ N(pi) \ Gi) are found by tracking near-
est points relative to the template mesh G0 grid position k
(Figure 1). Φ(|Ti(xi)− Tj(xj)|) represents a Dirac-driven
function whose role is to define which pixels correspond to
the same position at the reference pose defined as in [24].

2.2. Global Low Rank Cost

Let Mpqrs be a matrix whose columns represent patches
of features for each subject centred at position k in the ref-
erence. We expect these feature sets when aligned to ex-
hibit high linear correlation. Thus in the case of perfect
alignment of patches with common topology, we expect the
matrix to have single rank. On the other hand if the pop-
ulation can be expressed in terms of a series of subgroups,
each with different topology then the data may have rank
1 < r << n. This term therefore supplements pairwise
comparisons in the case where feature sets are inconsistent.

The global cost is estimated through simultaneous dis-
placement of quartets of control points qrs ∈ N(p) \ Gi.
This is motivated by the assumption that simultaneous op-
timisation of displacements across groups of surfaces will
enable faster convergence. However, increasing clique sizes
increases computation overhead as more get added to the
pairwise QPBO optimisation. For this reason, quartet terms
were considered a reasonable trade off between run time
and accurate approximation of rank at time t.

Rank is approximated through the nuclear norm, or sum
of singular values ||Mpqrs||∗ :=

∑
i Tr(

√
MT

pqrsMpqrs)

of the feature matrix Mpqrs:

Vpqrs(lp, lq, lr, ls) = α||Mpqrs||∗ (3)

Where, use of the nuclear norm as a relaxation of the num-
ber of eigenvalues (or rank) of the matrix is commonly
used approximation in convex optimisation methods such
as [19]. Here Mpqrs is formed from the overlap between
patches Ik1 ∩ Ik2 ∩ Ik2 ...∩ Ikn relative to reference position k.
Sample displacement of data associated with control points
qrs for labels lp, lq, lr, ls at time t is compared with data
resampled from the remaining subjects at time t− 1.

2.3. Regularisation

Taking inspiration from [13] we propose a penalty term
that constrains the strain-energy density (W ) of locally
affine warps Fpqr defined between the triangular faces for
the original and deformed control-point grid meshes:

Vpqr(lp, lq, lr) := λW 2
pqr

= λ
1

2
(µ(I∗1 − 3) + κ(J − 1)2)2 (4)

Here µ is the shear modulus and κ is the bulk modulus.
These were set to a ratio of 2:1 based on parameter optimi-
sation over pairwise registration combinations for 6 inde-
pendent subjects.



Here, I∗1 = I1I
−1/3
3 . I1 and I3 are strain invariants given

by:

I1 = trace(FT
pqr.Fpqr) (5)

I3 = J2 = det(FT
pqr.Fpqr) (6)

2.4. Optimisation

In order to account for triplet terms we adopt the ap-
proach of [11, 12]. This allows reduction of higher order
terms either by: A) addition of auxiliary variables (for ex-
ample by reducing a triplet to three pairwise terms [11]; or
B) by reconfiguration of the polynomial form of the MRF
energy, until the high-order function can be replaced by a
single quadratic [12]. We present results using the latter ver-
sion, known as Excludable Local Configuration (ELC). This
has the advantage that, provided an ELC can be found, there
is no increase in the number of pairwise terms, which has
some impact computational time. In each instance the re-
duction is passed to the QBPO solver for optimisation [21].

3. Experiments
We test the framework using data from the Human Con-

nectome Project. As proof of concept we run the frame-
work on the 10 unrelated subjects, and estimate group-wise
alignment for cortical folding features. We choose cortical
folding as these are the most straightforward to visually in-
terpret, and are unaffected by noise, which, by contrast, is
a large contributor to the inter-subject variances differences
observed for functional activations. However, the frame-
work can be directly applied to all forms of cortical surface
data.

Three different frameworks for template generation were
compared: 1) Registration to a group average template; 2)
Pairwise registration between all surface combinations, fol-
lowed by transformation averaging and resampling to a ref-
erence grid; 3) Group-wise registration using the proposed
framework.

In each instance registrations were initiated through an
affine alignment to the HCP group average sulcal template,
and, for fair comparison, parameters of each registration
framework were optimised to best match of the folds, sub-
ject to warp distortions distributions being equal. Here, dis-
tortions are calculated as log2A2

A1
, where A2 is mesh face

area following registration andA1 is mesh face area prior to
registration. This parameter optimisation led to a choice of:
1) λ = 0.001; 2) λ = 0.0005; 3) λ = 0.00001, α = 0.0001.

Results are compared through comparisons between
pairwise similarities between all cortical folding feature
maps, following warping and resampling to the group aver-
age surface; and variances of resulting cortical folding fea-
tures following registration and resampling to the template
space.

Figure 2. Areal distortion distributions for: 1) Registration to a sin-
gle reference template; 2) Pairwise registrations; 3) The proposed
group-wise registration framework

4. Results

Figure 2 shows box plots of the absolute values mesh
face distortions across all warped surfaces. In general these
meet the (maximum 3 fold) range of regional variation ob-
served across humans and non-primates in nature [26]. Nev-
ertheless registrations have also been optimised for folding
feature similarity, and the high tails of the distributions sug-
gest some unnaturally high distortions indicating that per-
fect matching would not be feasible, even in this small data
set, due to the extent of variability of folding in the data.

Figure 3 demonstrates significant improvement in be-
tween subject sulcal depth map correlations for the pro-
posed group-wise registration framework, relative to regis-
tration to the HCP sulcal depth average template, and pair-
wise alignments. Note pairwise correlations are estimated
directly for each independent pairwise registration, prior to
transformation averaging and resampling.

This improvement is also reflected in a significant im-
provement in sharpness for the group average template (Fig-
ure 4: top) and reduction in variance (Figure 4: bottom) of
sulcal depth maps, as measured following resampling of the
warped feature sets to the reference space. The group-wise
average also displays greater deviation from the HCP tem-
plate, particularly in areas of known folding variation (white
arrows).

Table 1 shows the percentage variance shared by each of
the first 5 singular values of the full (features× subjects)
data matrix, for each of the 3 methods, and relative to affine
alignment. In each case the first eigenvalue takes the largest
share of the variance, and this is significantly improved
upon following group registration. However, the significant
variance share of the first eigenvalue following affine align-
ment suggests that this particular data set does not support
the existence of multiple subsets within this small group.



Figure 3. Between subject correlation of sulcal depth maps fol-
lowing: 1) Registration to a single reference template; 2) Pairwise
registrations; 3) The proposed group-wise registration framework

Table 1. Singular value distributions

AFFINE SINGLE TARGET PAIRWISE GROUP-WISE
0.318 0.453 0.387 0.510
0.090 0.072 0.079 0.064
0.085 0.070 0.077 0.060
0.080 0.065 0.074 0.0564
0.077 0.062 0.065 0.0550

5. Discussion

Motivated by the observation, that cortical folding pat-
terns and functional activations display topological varia-
tions, even across healthy adult brains; this paper has pro-
posed a preliminary framework for group-wise registration
of cortices, that seeks to minimise the rank of the surface
feature set. The goal is to find optimal spatial correspon-
dence across a population even when the population can be
subdivided into groups with conflicting feature topologies.

The framework has been tested on ten subjects from the
HCP, where cortical folding patterns were chosen to drive
alignment on account of folding maps being most straight-
forward to visually interpret. The proposed framework
shows strong improvements in terms of pairwise similarities
between the feature maps, as well as reduction in variance
of cortical folding across subjects, following alignment.

One surprising outcome of this initial result is that pair-
wise registration with transformation averaging appears to
generate results with greater variance (Figure 4). One likely
reason for this is that regularisation for each method was
constrained to enforce comparable levels of areal distor-
tion. With more relaxed regularisation pairwise alignment
would allow a sharper result. Further improvements in
shape driven cortical alignment may be offered by diffeo-
morphic based approaches such as [6]. However, this is
explicitly not the goal of this approach. Rather, the point
being made is that outside of what common topology can
be found, there exists a high degree of natural folding and

functional variation in brain structure. Indeed, there is ar-
guably no common shape to deform to.

At this time, there is not sufficient evidence to defini-
tively support the inclusion of the global low rank term
within the group registration framework, nor the choice of
implementation as a quartet term. This is largely due to lim-
ited validation performed on a small data set, for which the
eigenvalue distribution of the chosen feature set supports
a single rank solution. The framework would need to be
tested on larger populations in which clear topological dif-
ferences in folding can be found.

Unfortunately, the relatively small number of subjects
used within this paper was necessitated by the increased
computational overhead of the patch resamplings needed
for the quartet term. Neighbourhood search and interpo-
lation is a greater overhead for cortical surface (as opposed
to volumetric image grid) resampling on account of the use
of irregular grids. In future this may be improved though
code parallelisation [15]. Nevertheless, more extensive val-
idation would need to be performed on the relative benefits
of using a quartet term, for global cost, rather than a unary
one.

The predominant limitation of the current global-rank
approach is that the high degree of inter-subject variation
is likely to mean that feature sets violate the assumption
of linear correlation following alignment. This is likely to
worsen with extrapolation to larger data sets, and functional
data which has significantly more artefactual noise. In the
computer vision literature, this problem has been addressed
for face alignment by using a sparse and low rank decompo-
sition approaches [19]. In the context of face recognition the
sparse principal component analysis approach allows gen-
eration of a low rank solution where features of the data,
that are not common across any of the data sets, are passed
to a sparse error term. Optimisation minimises the sum of
matrix nuclear norm and regularised sparse penalty terms.
Future work will incorporate this approach.

In conclusion this framework shows potential for im-
proving the global compactness of any group-wise corti-
cal surface atlasing approach. Much greater validation of
the approach is necessary, specifically with regards to com-
parison against other methods and appropriate experimen-
tal justification of use of high-order costs. In future the
framework has the potential to improve understand of pop-
ulation variability in brain topology. A significant goal is
to assess whether clusters of brain structures exist, in which
sub-populations share specific variants of cortical shape and
functional activation topologies and clear differences can be
identified between groups.
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