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Abstract. In this paper, we introduce a novel approach to bridge the gap between
the landmark-based and the iconic-based voxel-wise registration methods. The
registration problem is formulated with the use of Markov Random Field theory
resulting in a discrete objective function consisting of thee parts. The first part of
the energy accounts for the iconic-based volumetric registration problem while
the second one for establishing geometrically meaningful correspondences by
optimizing over a set of automatically generated mutually salient candidate pairs
of points. The last part of the energy penalizes locally the difference between
the dense deformation field due to the iconic-based registration and the implied
displacements due to the obtained correspondences. Promising results in real MR
brain data demonstrate the potentials of our approach.

1 Introduction

Image registration is a fundamental problem in medical image analysis. Due to its im-
portance, great efforts have been made to tackle this problem resulting in numerous
approaches. The existing methods fit mainly into two categories.

In the first class of methods, geometric (e.g. [1–3]), landmarks are detected and
subsequently matched to establish correspondences between the images being regis-
tered. Such an approach exhibits strength and limitations. On one hand, if landmarks
are appropriate determined, solving the registration problem is straightforward and the
method is not sensitive to the initial conditions and can cope with important deforma-
tions. On the opposite side, the registration result is usually accurate in the vicinity of
the interest points and its accuracy deteriorates away from them while often the extrac-
tion of landmarks is also problematic.

The second class of methods, iconic (e.g.[4–7]), takes advantage of the intensity in-
formation of all positions and tries to recover the deformation that optimizes a criterion
based on it. Methods of this class exhibit globally better accuracy at the cost of greater
computational effort. These approaches consider all points contributing equally to the
objective function, thus discarding the importance of the salient points of the image.
Furthermore, they are very sensitive to the initial conditions and often unable to deal
with large deformations. Last but not least, their performance deteriorates when con-
sidering multi-modal image fusion where defining an appropriate similarity metric is
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far from being trivial, while at the same time the optimization of the objective function
becomes more challenging.

During the last years, efforts have been made to bridge the two main classes of ap-
proaches by taking advantage of both complementing types of information, resulting
in a hybrid approach (e.g.[8–13]). Among these methods, the way the two types of in-
formation are used varies widely. Most methods decompose the registration problem in
two separate steps, each one exploiting information of one type. Typically, landmark
information is used either to provide a coarse registration that is subsequently refined
by using the intensity information [8] or more often, after having established point cor-
respondences, use them in the objective function to ensure that the optimal deformation
field will comply with them [10–13]. However, by considering geometric and iconic
information in a non-coupled way, the solution of each subproblem (point correspon-
dence, dense registration) cannot fully profit from the solution of the other. We refer to
[9], where an objective function is proposed that combines an iconic-based dense field
and geometric constraints and is optimized by alternating between three steps: estimate
the dense deformation field, the point correspondences and regularize.

In this paper we couple the point correspondence and the dense registration problem
into an unified objective function where the two problems are solved simultaneously in
an one step optimization. We employ a Markov Random Field formulation towards
introducing individual costs for the family of parameters and their interactions. More-
over, due to the discrete nature of the proposed objective function any intensity-based
criterion can be used. To the best of our knowledge, only one other hybrid method can
claim that [10], but it cannot guarantee the convergence as a ping-pong effect is possi-
ble between iterations. Moreover the proposed method is able to constrain the recovered
dense deformation field to be diffeomorphic contrary to the rest of the hybrid methods.
Last but not least, the influence of the landmarks is done in a local way and in respect
to the deformation model used without the use of heuristics and any assumption on the
number or the nature of the landmarks.

2 Iconic-Landmark Registration

Let us consider two images I1 : Ω1 7→ R, I2 : Ω2 7→ R , a set of points of interest
P1 ∈ Ω1, and a set of potential candidates for the points p1 ∈ P1, P2 ∈ Ω2 such that
|P2| > |P1|. By | · | we denote the cardinality of the set. The aim of the algorithm is
to estimate the deformation field T : Ω1 7→ R3, such that an iconic criterion defined in
the whole image domain is satisfied, and to recover the correspondences between the
two different point sets such that the estimated solutions are consistent with each other.

A grid-based deformation model is going to be used, resulting in a decreased num-
ber of variables to be estimated. The dense deformation field is going to be given by
interpolating the displacements of the grid points. Let us consider a deformation grid
G : [1, Sx]× [1, Sy]× [1, Sz] then,

T (x) = x+D(x) where D(x) =
∑
p∈G

η(‖x− p‖)dp. (1)
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η(·) is a weighting function that measures the contribution of each control point to the
displacement fieldD(·). In the case of the cubicB-spline that are going to be used here,
the weights are given by the cubicB-spline basis functions depending on the distance of
the voxel from the control point. The specific deformation model allows diffeomorphic
deformations to be guaranteed through the use of hard constraints [5].

The goal will be reached by coupling the dense deformation field estimation and the
point correspondence problem in one with the use of the Markov Random Field (MRF)
theory. The typical first-order MRF energy is of the form:

EMRF =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (2)

where the first term (unary potentials) encodes the information stemming from the ob-
served variables (intensity values) and typically acts as the data term of the energy. The
second term (pairwise potentials) encodes relations between pairs of latent variables
and typically acts as a regularizer. By lp the label attributed to variable p is denoted.

2.1 Point Correspondence Problem

For the point correspondence part, the goal is to estimate which point p2 ∈ P2 corre-
sponds to each of the points p1 ∈ P1. We are assuming that the true underlying anatom-
ical correspondence is included in the set of potential candidates P2. The two point sets
should capture the important geometric information of the two images in order to act as
the additional constraints that will enhance the performance of the registration.

Any method for establishing candidate correspondences can be used. Herein, multi-
scale and multi-orientation Gabor filters are used to locate points of interest in the
image domain. Gabor filters are able to provide distinctive description for voxels be-
longing to different anatomical regions by capturing local texture information [14, 15].
Local texture information reflects the underlying geometric and anatomical character-
istics. Thus, points exhibiting a high response to Gabor filters are most likely placed in
salient anatomical regions whose matching can be used to guide the registration pro-
cess. In other words, the set P1 consists of points whose response to the Gabor filters
is significant and that are distributed in space. Then, the set P2 of potential correspon-
dences can be populated by taking for every p1 ∈ P1, the top K candidate points in an
appropriately defined sphere in terms of a similarity criterion that is based on the dif-
ference between D-dimensional Gabor attribute vectors A(·) weighted by the mutual
saliency. The role of the mutual saliency, ms(p1, p2) =

meann∈sin (sim(A(p1),A(n)))

meann∈sout (sim(A(p2),A(n)))

[15] (sin and sout are appropriately defined regions around the points and are adaptive
to the scale from which Gabor attributes are extracted), is to narrow down the selec-
tion to candidate points that are mutually salient indicating matching reliability. The
similarity is given by

sim(p1, p2) =
1

1 + 1
D‖A(p1)−A(p2)‖2

. (3)

In a MRF framework, the point correspondence problem can be solved by minimiz-
ing an appropriately defined labeling energy. What we search is which label (or index
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of candidate point) to attribute to each p1 ∈ P1 to establish a correspondence. Thus,
the label set is defined as Lgm = {l1, · · · , lK}, where the label assignment lji corre-
sponding the j-th potential candidate point to the i-th point/node. The optimal labeling
l? = (l1, · · · , lN ) will minimize the discrete objective function. For that purpose, we
are going to construct a graph Ggm = (Vgm, Egm) where the set of the nodes Vgm co-
incides with the point set P1 and each edge in Egm encodes a geometric compatibility
constraint.

The discrete objective function is of the type of Eq.2. The unary potentials will
quantify the level of similarity between the landmark and its assigned candidate point.

Vp(lp) = exp

(
−ms(p, p

′) · sim(p, p′)

2σ2

)
(4)

where p′ is the point in P2 that is corresponded to p through a label assignment lp and
σ is a scaling parameter.

The regularization term will impose a geometric consistency on the established cor-
respondences. What we would expect from the recovered pairs is that the distance be-
tween adjacent pairs should be preserved by their corresponded ones, thus avoiding
having landmarks flipping positions. The pairwise potential is defined as:

Vpq(lp, lq) = ‖(p− q)− (p′ − q′)‖ (5)

where in bold the physical position of the point is denoted. We consider that an affine
registration step has preceded, as a consequence no normalization is needed.

2.2 Iconic Registration

For the estimation of the dense deformation field we follow the approach proposed in
[6]. The reasons behind this choice lie in the fact that due to the discrete nature of the
formulation a wide range of similarity measures can be used. Moreover, the method is
computational efficient while producing precise results. For completeness reasons, the
iconic registration method is going to be presented briefly in this section.

Given the deformation model, we aim at optimizing the displacements of the grid
points. In the proposed discrete framework this is equivalent to assign a label to each
grid node such that the displacement associated to it decreases the energy. For the iconic
registration part, the label set Lic is quantized version of the deformation space where
each label l corresponds to a displacement dl. To impose the diffeomorphic prop-
erty, the maximum displacement, to which a label is corresponded, is 0.4 × δ where
δ is the grid spacing [5]. In order to solve the optimization problem, a regular graph
Gig = (Vic, Eic) is going to be constructed. Its nodes coincide with the nodes of the de-
formation gridG and edges exist between neighboring nodes assuming a 6-connectivity
scheme.

The unary potentials are defined as follows:

Vp(lp) =

∫
η̂(‖x− p‖)ρ(I1(x+ dlp), I2(x))dx (6)
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The data term is based on an iconic similarity measure ρ(·) and η̂(·) is a function that
determines how much a voxel x influences a node p. It is defined as

η̂(‖x− p‖) = η(‖x− p‖)∫
Ω
η(‖y − p‖)dy

or η̂(‖x− p‖) =

{
1, if η(‖x− p‖) > 0,
0, else.

(7)

for the case of voxel-wise and more sophisticated statistical criteria respectively. The
regularization term in the simplest case can be a vector difference between the displace-
ments that are encoded by the two different labels normalized by the difference of the
control points,

Vpq(lp, lq) =
‖dlp − dlq‖
‖p− q‖

(8)

2.3 Simultaneous Geometric - Iconic Registration

In order to tackle both problems at the same time, a new graph G = (V, E) should be
considered. The node system of the new graph is simply the union of the nodes of the
subproblems V = Vic∪Vgm. The edge system of the graph will comprise of the edges of
each subproblem and appropriate edges that will connect the two graphs and will encode
the consistency between the solutions of the two subproblems E = Eic ∪ Egm ∪ Ecn.

The unary potentials and the pairwise potentials will be the same as the ones previ-
ously detailed except from the ones that correspond to the new edges and have yet to be
detailed. In order to impose consistency upon the solutions of the two subproblems, the
difference between the displacement field due to the grid-based deformation model and
the displacement implied by the recovered correspondence should be minimal at the
landmark position. Given a cubic B-spline FFD deformation model and considering,
without loss of generality, only one landmark, then

0 = ‖D(x∗)− (p′∗ − p∗)‖ = ‖
M∑
i=1

βi(x∗)dpi − dp∗‖ =

‖
M∑
i=1

βi(x∗)dpi −
M∑
i=1

βi(x∗)dp∗‖ ≤
M∑
i=1

βi(x∗)‖dpi − dp∗‖ (9)

where the displacement of the voxel x∗ is dp∗ = p′∗ − p∗ and the properties of the
cubic B-spline,

∑M
i βi(·) = 1, βi(·) ≥ 0, and the triangular inequality were used.

M = 4× 4× 4, the number of the grid nodes that control the displacement of a voxel.
The previous relation (Eq.9) can be modeled by adding edges between the nodes of

the irregular grid Vgm and those nodes of the regular grid Vic that control the displace-
ment of the position in which the landmark is placed. The pairwise potentials are given
by the following equation

Vpq(lp, lq) = w‖dlq − (p′ − p)‖. (10)

p, p′ and dlq are defined as previous. w is a weight based on the cubic B-spline basis
as a function of the distance of the landmark from the control point q. This formulation
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results in minimizing an upper bound of the energy while permitting us to model the
problem by pairwise relations between the latent variable and thus allowing for the use
of any standard MRF optimization technique.

3 Experimental Validation

3.1 MRF Optimization

In order to optimize the resulting MRF problem, the convergent Tree-Reweighted (TRW)
Message Passing algorithm was used [16]. The TRW algorithm aims to address the
MRF optimization problem by tackling the simpler dual of its Linear Programming
(LP) relaxation. Any solution of this problem is a lower bound to the energy of the orig-
inal problem. Thus, the TRW algorithm aims to maximize the bound and thus reach a
solution. TRW is known to have a state of the art performance among the various dis-
crete optimization methods and has proven its applicability in various tasks in the fields
of computer vision and medical imaging.

3.2 Experimental Results

To validate the proposed method, a data set of 11 T1-weighted brain images of different
subjects was used. The resolution of the images is 256 × 256 × 181 with an isotropic
voxel spacing of 1mm. The volumes were manually annotated into 11 classes (back-
ground, cerebrospinal fluid, white matter, gray matter, fat, muscle, muscle/skin, skull,
around fat, dura matter and bone marrow). The Sum of Absolute Differences (SAD)
was used as iconic similarity criterion.

To visually assess the quality of the registration, a template image is chosen and all
the rest are registered to it. Then the mean image, its difference with the template as
well as the standard deviation image are calculated for the images before and after
the registration (Fig.1). The blur mean image and the great values for the standard
deviation before registration depict the difficulty of the registration task. On the bottom
row, the mean image has become sharper indicating that the images have been spatially
normalized. The values of the standard deviation have decreased especially in the area
of the ventricles. The results of the registration can be also seen when comparing the
two difference images and noting that the difference image (c2) is darker than (c1).

To further quantify the performance of the algorithm, we performed all possible
110 pair-wise registrations and the provided voxel-wise manual segmentations are used
to measure the accuracy of the proposed method. We select each one of the images as
target and register the rest to it. The obtained deformation fields are then used to warp
the segmentations. Finally, we compare the deformed segmentations with the manual
ones by calculating the DICE overlap measure, its sensitivity and specificity. The re-
sults are presented graphically in Fig.2 in the form of box plots. When comparing the
obtained results to the initial DICE coefficients, it becomes evident the impact of the
registration. Moreover, we compare the proposed method with the one that only uses
the iconic information to show the added value of the use of the landmark information.
The iconic registration is performed by discarding the landmark information in the pro-
posed framework. In a similar way, DICE, sensitivity and specificity are computed for
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Fig. 1. (a)Template image. Top row: the mean image, the difference between the template and the
mean image, the standard deviation image for the data-set before registration. Bottom row, the
respective images for the group after registration.

the iconic registration and are presented in Fig.2. From the comparison of the DICE
values, it can be concluded that the addition of the landmark information has amelio-
rated the registration result as the DICE values for the geometric - iconic registration
are greater than the values of the iconic one. Moreover, it can be concluded that the
addition of the landmark information has rendered the registration less sensitive to the
initial conditions. This can be justified by the difference between the worst case results
produced by both methods.
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Fig. 2. From left to right, DICE coefficients, sensitivity and specificity for gray matter and white
matter segmentations initially (Init) and after applying the iconic registration method (ICR) and
the simultaneous geometric-iconic registration method (SIGR) respectively. The first three results
are for the gray matter while the next ones for the white matter.

4 Discussion

In this paper we have proposed a novel approach to couple geometric (landmark) and
iconic (voxel-wise) registration. The proposed method is, to the best of our knowledge,
the first to propose an one-shot optimization on the joint parameter space, and therefore
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inherits ability to capture large deformations, independence with respect to the initial
conditions, smooth and continuous diffeomorphic dense field, while being able to ac-
count for various similarity metrics and arbitrary number and position of landmarks.
Promising results demonstrate the potentials of this elegant formulation.

The bias introduced from the landmark extraction process is an important limitation
of the method. Such a limitation can be dealt with the use of the notion of missing cor-
respondences. This is something that we are willing to address in the near future. The
use of higher order model interactions between graph nodes is also interesting, since it
could make the framework rigid or similarity invariant. Last but not least, the encourag-
ing results that were obtained in the intra-modality case suggest that the application of
the proposed method in the problem of multi-modal image fusion could be of significant
interest.
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