
Geodesic Patch-based Segmentation

Zehan Wang1, Kanwal Bhatia1, Ben Glocker1, Antonio de Marvao2, Tim
Dawes2, Kazunari Misawa3, Kensaku Mori4,5, and Daniel Rueckert1

1 Department of Computing, Imperial College London, London, UK
2 Institute of Clinical Sciences, Imperial College London, London, UK

3 Aichi Cancer Center, Nagoya, Japan
4 Department of Media Science, Nagoya University, Nagoya, Japan

5 Information and Communications Headquarters, Nagoya University, Nagoya, Japan

Abstract. Label propagation has been shown to be effective in many
automatic segmentation applications. However, its reliance on accurate
image alignment means that segmentation results can be affected by any
registration errors which occur. Patch-based methods relax this depen-
dence by avoiding explicit one-to-one correspondence assumptions be-
tween images but are still limited by the search window size. Too small,
and it does not account for enough registration error; too big, and it
becomes more likely to select incorrect patches of similar appearance for
label fusion. This paper presents a novel patch-based label propagation
approach which uses relative geodesic distances to define patient-specific
coordinate systems as spatial context to overcome this problem. The ap-
proach is evaluated on multi-organ segmentation of 20 cardiac MR images
and 100 abdominal CT images, demonstrating competitive results.

1 Introduction

Accurate segmentation in medical imaging plays a crucial role in many applica-
tions from patient-specific diagnosis to population studies. The ability to perform
this task without human intervention is particularly desirable for large datasets.
Multi-atlas label propagation approaches [7],[12],[1],[10], in which labels from
multiple atlases are propagated to target images after registration, have been
shown to be highly effective. However, dependence on image registration for
these methods can be problematic as inaccurate alignment adversely affects seg-
mentation quality. Additionally, finding suitable (fixed) registration parameters
that yield accurate non-linear correspondences on different images can be a chal-
lenge on its own, particularly for anatomies that are highly variable. Patch-based
methods for label propagation [3],[13] can help alleviate this dependence since
they do not rely on explicit one-to-one correspondences between images, and
are often able to use affine rather than non-rigid registration, yet still produce
comparable results.

Patch-based segmentation assumes that patches with similar intensities and
from similar local neighbourhoods are likely to be the part of the same anatom-
ical structure. Traditionally, this locality is enforced by a sliding search window
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of a fixed size (typically < 113 voxels). Label fusion then determines spatially-
varying weights for each label according to the similarity of the corresponding
patches within each voxel neighbourhood. This neighbourhood, when defined
as a fixed size search window, imposes a hard restriction on tolerance to any
registration errors that occur. Increasing the size increases the tolerance to reg-
istration errors but also increases the computational requirements and may yield
patches with similar appearance but from different anatomical structures. Us-
ing hierarchical frameworks [5], [18] partly addresses these restrictions, however
these approaches still use a fixed search window size. More recently, several meth-
ods have reformulated the standard patch-based approach to consider the local
neighbourhood for each voxel globally based on k nearest neighbours (kNN) [15]
or a trained neighbourhood approximation [8] rather than using a fixed search
window size. This alleviates the computational burden, whilst the selection of
patches are regularised by different approaches to apply spatial context and
consistency. Another approach uses random forests trained on individual atlases
with spatially varying representation of patches instead of fixed patch sizes [19].

The use of spatial context regularises the patch selection process by compar-
ing spatial similarities between patches as well as their appearance similarity.
This enables locally similar patches of different structures to be distinguished
when larger search windows are used and also increases the tolerance with re-
gards to variability between images in intensities for the same structures. One
approach to incorporating spatial context is to use spatial coordinates and eu-
clidean distances between labelled structures [15], [6]. However, this does not take
into account the context of the image such as the boundaries between structures
and is sensitive to anatomical variability when comparing between subjects. In
this paper, we propose instead to use geodesic distances within the image to
provide spatial context which is able to contribute information on the locality of
structure boundaries. The use of geodesic distances has been shown to be effec-
tive in interactive segmentation [4] and we adopt this within an automated patch-
based segmentation method, formulating a multi-resolution approach based on
adaptive, anatomically-specific coordinates in order to leverage its use. We im-
plement this within a kNN framework using fast-building kNN data structures,
so that these adaptive spatial features can be applied at run time. We evaluate
our proposed methods on multi-structure and multi-organ segmentation of 20
cardiac MR images and 100 abdominal CT images, respectively.

2 Methods

Our framework is intended to extend the ability of patch-based segmentation
methods to tolerate potential registration errors. Increasing this tolerance re-
quires patch comparisons to be made within a search space that can encompass
the margin of error but also maintain the sense of “locality” which restricts the
comparison to relevant patches. To do this, we define the local neighbourhood
for each patch by its kNN in terms of both spatial context and intensity similar-
ity, so as to distinguish between similar patches from different structures. This
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allows the search space of patches to be global whilst maintaining the sense of
locality, thus removing the requirement for a fixed search window size to be set.

2.1 Adaptive Coordinate System as Spatial Context

When dealing with potentially large misalignments between images, spatial con-
text based on explicit image coordinates can be unreliable. Spatial context should
therefore be defined in a way that is robust to misregistrations. To this end, we
introduce the concept of relative distances. If we can establish any reference
points or an initial rough segmentation, we can then use a distance transform
on the labelled structures to create a non-Cartesian, patient-specific coordinate
system that is invariant to how anatomical structures are positioned within the
image (Fig. 1a, 1b). For a voxel x, we define the spatial context S(x) as a vector
[d(x, r1), d(x, r2), ..., d(x, rn)] where d(.) is the distance and r1, ..., rn are labelled
structures or landmarks.

(a) (b)

(c) EDT (d) EDT Map

(e) GDT (f) GDT Map

Fig. 1: (a) and (b) shows how spatial context for x can be provided by the
distances to structures regardless of the how they are positioned within the
image. (c) and (e) provide an example where this type of spatial context can
be used and how the distances will be different. (d) and (f) show the respective
distance maps using EDT and GDT from the liver, where distances are shown
as being proportional to the intensity.

In principle, three reference points are required to localise a point in 3D
space, but useful information can still be obtained with less. For example, relative
distances from two structures can localise a curve, whilst distances from a single
structure can provide enough spatial context for a surface. This may be enough
to distinguish between patches of similar intensities from different structures.

One possible approach for relative distances is to use the Euclidean Distance
Transform (EDT), however the EDT does not take information present within
the image into account, such as visible boundaries between structures, and may
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be insufficient when high anatomical variation exists (see Fig. 1). To improve
localisation, we propose to additionally include information from visible bound-
aries, given by image gradients, between structures.

2.2 Geodesic Distance Transform (GDT)

To overcome the shortfalls of the EDT in providing adaptive spatial context, we
propose the use of a geodesic distance transform (GDT), which takes into account
image gradients and describes distances between structures using the shortest
path along the image intensities rather than just through physical (empty) space
[4]. In general, the geodesic distance between two points x, y within an image I
is defined as follows:

d(x, y) = inf
Γ∈Px,y

∫ l(Γ)

0

√
1 + γ2(∇I(s) · Γ′(s))2ds (1)

where Γ is a path in the set of all paths, Px,y between x and y and is
parametrised by its arclength s ∈ [0, l(Γ)]. EDT can be considered a special
case of the GDT, since these are equivalent when γ is set to 0. There are many
geodesic distance transform algorithms [17]; we use the approach from [14] which
was also used in [4] and demonstrated to have good performance with linear
computational requirements.

2.3 Spatially Weighted Label Fusion

With the inclusion of spatial context, the label fusion for voxel x is determined
as follows - let P (x) be a vector of intensities for the patch at voxel x and let
{yL,i : i ∈ 1, ..., k} represent potential matches from the atlas library for each
label L. A weighting wL for each label L is determined by comparing the k
nearest patches from the atlas library with regards to both intensities P (x) and
spatial context S(x) - and as such no search window is used:

wL(x) =

k∑
i=1

w(x, yL,i) (2)

where

w(x, y) = e
−{||P (x)− P (y)||22 + α||S(x)− S(y)||22}

h2(x)
(3)

and similarly to [3], h2(x) is determined by the minimum distance:

h2(x) = min{||P (x)− P (yi)||22 + α||S(x)− S(yi)||22} (4)

A spatial weighting α balances the relative importance between the spatial
and intensity components. The final label L̂ at voxel x is decided by majority
vote, i.e. L̂(x) = arg maxL wL(x)
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2.4 Framework Implementation

As an overall segmentation framework, we propose applying a multi-resolution
approach with the core methods described above in an iterative process where
only the boundaries, defined by the difference between the dilation and erosion
of each segmentation, are refined as the segmentation is propagated through
higher resolutions [15]. Multiple resolutions of each image can be created offline
by constructing a Gaussian image pyramid. This reduces the computational cost
compared to processing directly at the native resolution.

The GDT is always calculated in the native resolution (and downsampled if
required) so that the same spatial weighting α can be used at all resolutions.
There are several options for an initial segmentation to enable the use of the GDT
for spatial context. For instance, the intersections of the atlases can be used if
this does not yield an empty set. However this may not always occur, in which
case, a coarse segmentation can be established in the lowest resolution using
coordinates as spatial context [16] or another segmentation technique. These
can be eroded, and relative distances can be calculated from eroded versions of
each structure to reduce the initial error. Successive refinements of the boundary
regions reduces the dependence on the initial segmentation.

For patch selection, ball trees [11] are used to facilitate the kNN search pro-
cess, although other kNN data structure can also be used. It is highly desirable
to have an efficient kNN data structure, since performing global kNN search can
be a computational bottleneck. Ball-trees and metric trees in general have been
shown to have better performance in higher dimensional spaces (>20) compared
to space-partitioning structures like the kd-tree [9].

3 Experiments and Results

(a) Dice (LV, M, RV): 0.929, 0.801, 0.905

(b) Dice (LV, M, RV): 0.953, 0.838, 0.934 (c) Dice (L, S, P, K): 0.947, 0.955,
0.826, 0.924

Fig. 2: Examples from using our approach (in cyan) for the Left Ventricle (LV),
Myocardium (M) and Right Ventricle (RV) in (a) and (b), and Liver (L), Spleen
(S), Pancreas (P), Kidneys (K). Reference segmentations are outlined in green.
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3.1 Cardiac Dataset

We applied our proposed approach to end diastole frames of Cardiac MR images
captured from 20 subjects using a 1.5T Philips Achieva system where we com-
pared it to using voxel coordinates and the EDT as spatial context, in addition
to the standard patch-based approach from [3] (Coupé) in segmenting the left
ventricle, myocardium and right ventricle of subjects under a single breath-hold.
The images had a native resolution of 256×256×64 voxels with voxel sizes of
1.25×1.25×2mm3. In total, 3 resolution levels were used by our approach, with
the lowest resolution at 5×5×5mm3 voxel sizes and the intermediate level at
2.5×2.5×2.5mm3 voxel sizes. Images were aligned using affine registration with
6 manually placed landmarks, and the intersections of the atlases were used as
initial segmentations. We evaluated each method using leave-one-out cross val-
idation and used the all available atlases (19) to segment each test image. A
patch size of 5×5×5 voxels was used for all resolutions and k was fixed at 40
for the kNN methods. For the different approaches to spatial context, α was
selected in the lowest resolution and then applied for all subsequent resolutions
whilst γ was set at 100 for GDT. The values for k and γ were not tuned.

Table 1 and Fig. 3 summarises the final segmentation accuracy and examples
of segmented images using our proposed method are presented in Fig. 2.

Table 1: Overall Dice Coefficients shown as mean (median) ±standard deviation
Method/Description Left Ventricle Myocardium Right Ventricle

Coordinates α = 7 0.931 (0.934) ±0.016 0.763 (0.763) ±0.049 0.871 (0.879) ±0.037
EDT α = 13 0.938 (0.938) ±0.017 0.806 (0.814) ±0.049 0.882 (0.893) ±0.047
GDT α = 5 0.934 (0.941) ±0.019 0.797 (0.803) ±0.039 0.901 (0.904) ±0.021

[3] window size = 73 0.931 (0.936) ±0.020 0.773 (0.787) ±0.053 0.889 (0.902) ±0.035

Fig. 3: Comparison of segmentation accuracy with regards to different spatial
context and different search window sizes (WS=x). Solid line represents the
median, the dashed lines represents the mean and standard deviation.
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3.2 Abdominal Dataset

We also evaluated our method on 100 abdominal CT scans which have an in
plane resolution of 512×512 voxels with voxel sizes ranging from 0.55 to 0.82mm
and contain between 263 to 538 slices with spacing ranging from 0.4 to 0.8mm
depending on the field of view and the slice thickness. For each scan, manual
segmentations of the liver, spleen, pancreas and the kidneys were generated by
a single trained rater.

For our approach, four resolutions levels were used, ranging from 4mm4 to
1mm3 voxel sizes. For each test image, affine registration was used to align the
atlases and 50 nearest atlases were selected using sum of squared differences
as the distance measure. Initial coarse segmentations were established by using
coordinates as spatial context [16] with α = 3, whilst subsequent refinements
using GDT as spatial context had α = 7. Our results are presented in Table 2
alongside those from [18] where affine registration followed by additional organ
level non-rigid deformable registrations were used. Similarly to [18], we apply
graph cuts [2] as post processing to obtain the final segmentation.

Table 2: Overall Dice Coefficients shown as mean±standard dev. [worst, best]
Organ Ours [18]

Liver 0.945±0.025 [0.842, 0.977] 0.940±0.028 [0.814, 0.974]
Spleen 0.925±0.084 [0.461, 0.979] 0.920±0.092 [0.264, 0.982]

Pancreas 0.655±0.186 [0.024, 0.902] 0.696±0.167 [0.069, 0.909]
Kidneys 0.924±0.077 [0.334, 0.982] 0.925±0.072 [0.515, 0.982]

4 Discussion and Conclusion

This paper has presented a new patch-based segmentation approach which uses
spatial context to provide robustness to misregistrations. To do this, we defined
a new adaptive, anatomically-specific coordinate system based on relative dis-
tances between structures. In addition, geodesic distances were used to be able
to localise even highly variable anatomy. The ability to do so on abdominal data
with only affine registration when previous methods have also used non-rigid
deformable registration demonstrates the robustness of our approach. It took
around 4 hours to segment each cardiac image and 14 hours for each abdominal
image using 16 cores clocked at 2.8Ghz, however this can be significantly reduced
with a more optimal kNN data structure implementation. Also, our framework
is easily parallelisable since voxels are labelled independently, so computational
time can be trivially reduced by scaling up parallel hardware. Furthermore, the
kNN patch search for each atlas is performed independently, enabling the frame-
work to run on distributed networks.

Overall this approach shows much potential, particularly in more challenging
datasets where achieving accurate registration is difficult.
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