
Our Approach: Context-sensitive Classification Forest

Classification Forest

• Context-sensitive Features (data representation)

• Feature vector represents a data point at (spatial point in scan) 

by non-local, parameterized, and intensity-based features

• Feature space: 

→ very high dimension of : number of unique parameter settings for all feature types 

• N. B.: Automatically learned feature parameters, instead of manual feature design

• Training (learning from training data with manual label annotations)

• Determine split functions at nodes (→ tree structure, statistics at leaves):

Estimate splitting dimension (from randomly chosen feature subspace ) and 

split threshold for , so as to optimize Information Gain (‘clustering of classes’)

• Testing (determining the label for unseen data point)

• For each tree , apply split tests to reach a leaf, and use the resulting 

in overall prediction 
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Evaluation

Dataset of High-grade Glioma Patients

• 40 multi-channel MR scans (pre-treatment): T1-gad, T1, T2, FLAIR, DTI-p, DTI-q

• Pre-processing: skull-stripping, affine intra-patient registration, resampling to 2mm, 

intensity mean alignment per channel (global multiplicative factor)

• Manual segmentations of AC, NC, E in 3D; gross tumor: GT = AC NC

Experiment Setup

• Leave-N-out with N=10,20,30 → Training/Testing ratios of 10/30, 20/20, 30/10

• Repeated 10x with random test set draws → 600 test segmentations per approach

• Evaluated approaches (each with and without DTI channels):

• Baseline: Initial probabilities (GMM-based, local intensity only)

• Forest without initial probabilities

• Proposed approach: Forest with initial probabilities

• Settings: number of trees n=40, depth d=20, per-node-feature-subspace size =200

• Timings: training per tree: 10-25 min, testing per image 2-3 min

1. Initial Class Probability Estimates

• GMM-based model of local multi-channel intensity

• Advantage: Speed  /  Drawback: Quality (noisy results)

2. Context-sensitive Classification Forest

• Context-sensitivity through:
• Initial class probabilities as additional input channels

• Non-local, parameterized features (→high-dimensional feature space)

→ Learned application/data-specific regularization effect

• General properties of Classification Forests:
• Inherent multi-label classification

• Efficiency for high-dimensional feature spaces

• Good generalization ability

Model-B Model-AC Model-EModel-NC

Initial tissue probabilities 

Segmentation

Initial Probabilities: GMM-based posteriors

• Train likelihood model of local, multi-channel MR intensity for each class 

(GMM-based)

• Probability of class given intensity at point (posterior probability)

with empirical class probability 

Goal: Automatic segmentation of tumorous tissue types
Active Cells (AC), Necrotic Core (NC), and Edema (E)

Challenge:
High variability in structure, location, shape and appearance

Motivation: 
• Clinical practice: Time savings

Initialize interactive segmentation for treatment

• Research: Volumetric measurements for individual tissues 

Quantification of progress/treatment in follow-up and research studies

Initial probabilities used as additional input channels

Test path

Forest Feature Types: non-local, parametric, intensity-based

• Type 1: Intensity Difference

• Type 2: Intensity Difference of Region Means 

• Type 3: Intensity Range along Ray

: offset vector;  : cuboid with side lengths 

Split Function

// go left

// go right

Input data (MRI + DTI)
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