Atlas Encoding by Randomized Forests for Efficient Label Propagation

Darko Zikic, Ben Glocker and Antonio Criminisi Microsoft Research Cambridge

Research

Main Idea: Encode a single atlas by training an atlas-specific randomized forest (Atlas Forest) for use within a standard multi-atlas label propagation (MALP) framework

Motivation: Efficient Labelling and Experimentation

1. only 1 registration per target (no reg. of all atlases to target) 2. computationally efficient encoding scheme

while keeping advantages of MALP, e.g. ability for atlas selection

 $p_t(c|x)$ Context-sensitive Features (data representation)

- Deterministic features: local intensity of input image and priors at x
- Randomized, Non-local, parameterized, and intensity-based features $f(x, I)_{p}$ Local cuboid mean intensity: $\mu(I(C_s(x)))$
- Difference of local intensity and offset cuboid intensity mean: $I(x) \mu(I(C_s(x+u)))$
- Difference of local and offset cuboid intensity means: $\mu(I(C_s(x))) \mu(I(C_r(x+v)))$ Difference of local and offset cuboid intensity means: $\mu(I(C_s(x+u))) \mu(I(C_r(x+v)))$ 3.
- Δ
- Training (learning intensity-based label prediction from a labelled image) Determine split function $\theta_{f_i,s}$ at each tree node, by estimating the splitting dimension f_i (from randomly chosen feature subspace) and split threshold s for f_i , to optimize Information Gain **Testing** (determining the label for each image point)

rand. feature

•

•

• For each tree t, apply split tests to reach a leaf, and use the resulting $p_t(c|x)$ in overall prediction $p(c|x) = \frac{1}{n} \sum_{t=1}^{n} p_t(c|x)$

slightly different settings to above, e.g. no skull-stripping Dice: mean (med) Hausdorff [mm] 0.8686 (0.8772) 3.3043 (3.1006) 0.8663 (0.8786) 3.5381 (3.2369) 0.8654 (0.8775) 3.4237 (3.1429)

4.1027 (3.8983)

3.7411 (3.5231)

3.8659 (3.6737)

Results on Data from MICCAI 2012

Dinecephalon Segmentation, unregistered data

0.8402 (0.8573)

0.8282 (0.8484)

0.8248 (0.8422)

(OASIS data, 14 labels)

Method

PICSI

UPENN_SBIA_M

SBIA LevelSet

deedsMIND

AtlasForest

AtlasForest Sta

Lonicor hondi grode Riolecor hondi grode Li procental grode GRO official grode GRO official grode GRO official grode	Location and an anti-and and an anti-and and and and and and and and and and	And and a second a	In Addression of the
] 525 of 14 nonlinear (eformation algorithms applied to human be	ain MRI registration. NeuroImage 2009	
	PICSL-BC (1 st at MALC)	Atlas Forests	
2	76.54%	73.66%	
C cort	73.88%	71.04%	

Multi-Atlas Labeling Challenge (MALC)	DSC	76.54%	73.66%
(OASIS data, 134 labels (98 cortical, 36 non-cortical)	DSC cort	73.88%	71.04%
Descension of Charlonge Boundon Blowdon on All Contrag Datas.	DSC non-cort	83.77%	80.81%
POLICE	Time	"computation time for registering each pair of images is about 20 hours" the fusion "finishes processing one brain image in about three hours"	4 min + 30 sec. for reg.

