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Abstract We propose a segmentation method which transfers the ad-
vantages of multi-atlas label propagation (MALP) to correspondence-free
scenarios. MALP is a branch of segmentation approaches with attractive
properties, which is currently applicable only in correspondence-based
regimes such as brain labeling, which assume correspondence between
atlases and test image. This precludes its use for the large class of tasks
without this property, such as tumor segmentation. In this work, we
propose a method which circumvents the correspondence assumption by
using a classifier-based atlas representation in the spirit of the recently
proposed Atlas Forests (AF). To counteract the negative effects of the
over-training property of AF for applications with highly heterogeneous
examples, we employ test-specific atlas weighting by the STAPLE ap-
proach. The main idea is that over-training ceases to be a problem if the
prediction is based only on training atlases which are “similar” to the
test image. Here, the “similarity” is based on the estimated ability of an
atlas-based classifier to perform a correct labeling. We show a successful
use of the proposed method for segmentation of brain tumors on data
from the BraTS 2013 Challenge, which presents a correspondence-free
scenario in which standard MALP cannot be expected to operate.

1 Introduction

Multi-atlas label propagation (MALP) is a popular branch of segmentation ap-
proaches. Given an atlas as a training image and the corresponding label map,
the essence of MALP approaches is to perform individual atlas-based predictions,
followed by a fusion step to form the final estimate. While MALP-based meth-
ods are extremely successful in certain settings such as brain labeling [1,2] or
segmentation of abdominal organs [3], they are restricted to the correspondence-
based scenario, where the assumption of correspondence between points in test
and atlas images is made. In this work, we aim to transfer the advantages of the
MALP framework to correspondence-free scenarios. Such regimes are an impor-
tant class of problems in medical image analysis - they occur for example when
highly heterogeneous pathologies such as tumors develop at different locations,
or their shapes strongly vary. Our model problem for such a setting is multi-
class segmentation of brain tumors in the BraTS 2013 challenge, which presents
a challenging problem with a database of highly heterogeneous atlases [4].
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Our work is motivated by two properties of the MALP framework which we
aim to transfer to correspondence-free settings: 1) ability for atlas selection, and
2) computational efficiency. In the following we discuss these properties and why
current MALP approaches are not applicable to correspondence-free scenarios,
outline the main idea of our approach, and relate it to previous work.

A central characteristic of the MALP framework is that individual predictions
are made based on each atlas, which are then fused into a final estimate. The first
advantageous property resulting from the per-atlas characteristic is the ability
for atlas selection [5]. Prediction based only on those training images which are
similar to the test image has the potential to improve results, especially for un-
derrepresented cases. This property is of increased importance for settings with
highly heterogeneous atlases, and its potential can be expected to rise with the
growing size of available labeled databases. The second advantageous property
is the high efficiency. Recently, classifier-based MALP (CB-MALP) approaches
have been introduced, which explicitly encode each atlas by an individual clas-
sifier [6,7], and significantly increase efficiency for training and experimentation
compared to standard learning schemes which pool data from all atlases. The
training efficiency comes from the smaller amount of samples for training of a
single classifier, and the experimentation efficiency is given by the ability for
cross-validation without retraining [6].

The combination of the ability for atlas selection and high efficiency makes
MALP an attractive framework for general purpose segmentation, however, cur-
rent MALP methods are applicable only in correspondence-based settings.

Most current MALP methods are registration-based [1,2], and thus explic-
itly operate in correspondence-based regimes. This holds for both, approaches
based on non-linear registration which make the one-to-one correspondence as-
sumption (e.g. [8,9,5]) , as well as for patch-based approaches which use the
relaxed one-to-many assumption [10,11]. The recently proposed classifier-based
MALP methods [6,7] are in principle applicable to correspondence-free scenar-
ios. However, approaches which train a classifier on a single atlas suffer from
over-training, and can be expected not to generalize well to examples very dif-
ferent from the training dataset. While this property is not an issue in relatively
homogeneous settings such as brain labeling where above methods were shown
to perform well, it becomes problematic in highly heterogeneous correspondence-
free settings such as brain tumor segmentation, as our experiments confirm for
the atlas forests scheme from [6]. So, despite the potential of MALP-based ap-
proaches, they are currently not used in correspondence-free scenarios. More
specifically, for our model problem of brain tumor segmentation, none of the
proposed methods at the BraTS challenges 2012 and 2013 [4] was set within the
MALP framework.

The main idea of this work is to base the segmentation on a classifier-based
MALP method, thus keeping the advantages of the MALP framework, and to
counteract the over-training issues of CB-MALP schemes by using classifiers ac-
cording to their ability to correctly label the test image. The rationale is that
over-training becomes a smaller issue with increasing “similarity” of testing and
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training data. Since the classifiers are atlas-based, such test-specific classifier
weighting corresponds to weighting of training atlases based on their “similar-
ity” to the test image. Here, the “similarity” between atlas and test image is
determined by the accuracy performance of the associated atlas-based classifier,
i.e. its ability to accurately label the test image. In this work, our CB-MALP
method is based on the Atlas Forests (AF) framework [6], which operates by
training an individual randomized forest classifier for each atlas. Originally, AF
fuses the predictions by averaging the individual probabilistic classifier estimates.
Instead, we propose to perform implicit atlas weighting by using the Simultane-
ous Truth and Performance1 Level Estimation (STAPLE) method [12]. At test
time, AF generates a set of candidate segmentations, for which STAPLE sub-
sequently estimates the performance level, and uses these estimates as weights
to combine the candidates into the final segmentation. Effectively, this means
that for each test image, each of the atlases is used for prediction according to
its estimated ability to perform a correct labeling. This way, our approach pre-
serves the advantages of computational efficiency of the CB-MALP framework,
while eliminating its negative effects of over-training, thus making it applicable
to correspondence-free scenarios.

1.1 Relation to Prior Work

Our work is closely related to the recently proposed classifier-based MALP
schemes from [6] and [7]. Our method is based on the atlas forest scheme from
[6], which is an instance of CB-MALP without atlas weighting. More details of
AF are discussed in Sec. 2. The focus of [7] is a generalization of STAPLE to
operate on probabilistic estimates, which are in that work generated by a Gaus-
sian Mixture Model of intensity patches, which are trained per atlas. Thus, this
method is an instance of CB-MALP with implicit atlas weighting, similar to the
approach proposed in this work. The studied setting in [7] is brain labeling, and
application in correspondence-free scenarios is not considered.

While we are not aware of any work using a MALP-based approach for brain
tumor segmentation, an interesting strategy to fuse multiple segmentations is
considered in [4], where the majority vote strategy is used to fuse the results
of methods which were a priori determined to achieve high accuracy. Since the
candidate segmentations are not associated with individual atlases, this approach
does not retain the MALP properties, and does not perform atlas weighting.

There are many strategies for atlas weighting for MALP. One is the use of
heuristics such as intensity-based similarity of images [5,3], or subject age [5].
Heuristics are usually used to perform atlas selection (i.e. binary weighting) prior
to testing. Alternatively, STAPLE [12] performs an implicit weighting of atlas
estimates. It operates a posteriori on computed candidate segmentations. Its
generality makes it applicable also in highly heterogeneous correspondence-free
settings, for which heuristic design is difficult.

1 In the context of STAPLE, ’performance’ stands for ’accuracy’, and we use the term
in the same sense in this paper.
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2 Method

The proposed framework consists of two steps: (1) use a classifier-based MALP
method, i.e. represent an individual atlas Ai by a classifier trained only on the
data from Ai, and at test, use each classifier to generate a candidate segmentation
L̂i, and (2) perform test-specific atlas weighting based on {L̂i}. In this work, we
use randomized forests (RF) for (1), and the STAPLE method [12] for (2). We
briefly describe these two components below.

2.1 Atlas-based Estimates by Randomized Classification Forests

We use the general idea of the atlas forest framework [6], but modify the actual
RF classifier according to [13] for the task of brain tumor segmentation. In
contrast to [6], we do not incorporate any location-based features since we aim
for the correspondence-free setting. Instead, as discussed in [13], we augment the
multi-channel input data with class-probability estimates, and train an RF with
context-aware features on this augmented data.

Given a set of N training atlases {Ai}i=1:N , consisting of an intensity image
Ii and the corresponding labelmap Li, the task is to estimate a labelmap L for
the test image I. As described in detail in Sec. 3.1, the original intensity images
are multi-channel 3D images, with 4 different MR-contrasts as channels, and the
labelmap encodes 5 different label classes, i.e. L(x) ∈ {0, . . . , 4}.

In the first step, an initial test-specific probabilitiy pcGMM(I) is created for
each class c, by testing with a Gaussian Mixture Model of local multi-channel
intensity for the class c, which is trained on all training data. These probabilities
are then used to augment the original input data as additional channels. This
can be seen as pre-processing for each image I, and we redefine I = [I, pGMM(I)]
to denote the resulting 9-channel 3D image for the following.

Based on the augmented input, we train randomized classification trees with
context-aware features. Following the atlas forest scheme, each tree is trained
only on an individual atlas Ai. A set of n such trees forms an atlas forest
ai = {T k

i }k=1:n. The training uses axis-aligned features and information gain
as splitting criterion. Randomization is introduced via random sampling of the
feature space by uniformly drawing feature types and parameters for the 3 ran-
domized feature types: 1) Intensity difference between location of interest x in
channel Ij1 and an offset point x+v in channel Ij2 ; 2) Difference between intensity
means of a cuboid around x in Ij1 and a cuboid around x+v in Ij2 ; 3) Intensity
range along a 3D line between x and x+v in Ij . For cross-channel features 1)
and 2), both Ij1 and Ij2 are drawn either from intensity or probability channels.

At test time, the image I is labeled by each atlas forest ai, resulting in N
candidate labelmaps L̂i(x) = arg maxc

∑
j pT j

i
(c|x, I). This is in contrast to the

original atlas forests [6], which averages the probabilistic estimates of the AFs
into a single prediction L̂(x) = arg maxc

∑
i

∑
j pT j

i
(c|x, I).
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2.2 Implicit Atlas Weighting by STAPLE

Given the set of candidate estimates L̂i, STAPLE [12] performs an Expectation-
Maximization (EM) algorithm to estimate the conditional probability of the
hidden true segmentation p(L(x) = c|{L̂i}, {θi}), as well as the corresponding
performances θi of the individual segmentations, modeled as confusion matri-
ces. Starting from initial estimates for {θi}, STAPLE iterates in standard EM
manner until convergence, with the final segmentation estimate being L̂S(x) =
arg maxc p(L(x)=c|{L̂i}, {θi}), with

p
(
L(x)=c | {L̂i}, {θi}

)
=

p (L(x)=c)
∏

i p
(
L̂i(x) | L(x)=c, θi

)
∑

c′ p (L(x)=c′)
∏

i p
(
L̂i(x) | L(x)=c′, θi

) (1)

In the numerator, the prior p(L(x)=c) is weighted by the probability of correct
prediction of c by the candidate segmentation L̂i(x), according to its estimated
performance θi. Since the estimates L̂i are directly associated to the atlases
Ai via the atlas-forest classifiers ai, this results in an implicit weighting of the
training atlas images according to their estimated relevance. Please note that
the performance for ai is in general not the same for different classes.

3 Evaluation

After providing details about data and setup, we present two experiments: In
Sec. 3.3 we evaluate the quality of STAPLE performance estimation, and in Sec.
3.4 we compare the results of a standard forest (Std. Forest) approach as in
[13], AFs with probabilistic averaging as fusion (AF-PrAvg) as in [6], and the
proposed AFs with atlas weighting by STAPLE (AF-STAPLE).

3.1 Data

The evaluation is performed on the real data from the NCI-MICCAI BraTS 2013
Challenge [4], which consists of 3 datasets: training, leaderboard and challenge.
The training data, for which the reference manual segmentations are available,
consists of 20 high-grade (HG) and 10 low-grade (LG) cases. Leaderboard has
21 HG and 4 LG cases, and challenge has 10 HG cases. We refer to the leader-
board and challenge data, for which the reference labelmaps are not known, as
evaluation data. The actual labelmaps contain 5 classes, however, the challenge
evaluation is performed on three “regions”, which combine the classes to: com-
plete tumor, tumor core, and enhancing tumor. For each case, 4 different MR
contrasts are given as input data: contrast enhanced T1, T1, T2 and FLAIR. As
additional pre-processing, we perform inhomogeneity correction by [14], set the
median of each channel to a fixed value (1000), and downsample the images by
factor of two with nearest-neighbor interpolation. Quantitative evaluation for all
experiments is performed by submitting to the BraTS challenge system.
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(a) Actual AF Performance
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(b) STAPLE Performance Estimate

Figure 1: Quality of STAPLE performance estimate on high-grade training data:
(a) Actual Dice scores (D) (average over all classes) resulting from testing on
individual AFs (diagonal: testing on training images, note the over-training ef-
fect). (b) Dice scores estimated by STAPLE (DE). Rows show performance of
different AFs for a given test image, which is relevant for atlas weighting: e.g.
AF-14 seldom performs well. The similarity between (a) and (b) shows that STA-
PLE performance estimates have high-quality: excluding the diagonal, average
correlation of corresponding rows of D and DE is 0.87.

3.2 Implementation and Parameter Settings

For the basic tree training, we use the method as described in Section 2.1 with
the same settings as in [13]. To replicate the results from [13] for Std. Forest, we
train 60 trees per forest for HG and LG. For Std. Forest, we perform random
subsampling of the background class with a sampling rate of 0.2. For Atlas
Forests, we train 3 trees per AF, resulting in 60 trees for HG and 30 for LG.
To perform STAPLE, we use the implementation from http://www.crl.med.

harvard.edu/software/STAPLE/index.php with the default settings.

3.3 Quantifying the Quality of Performance Estimates by STAPLE

This experiment evaluates the ability of STAPLE to predict the performance of
individual AFs for brain tumor data, with results summarized in Fig. 1. In this
context, performance describes the accuracy of the prediction by an individual
classifier. For this task, we use the HG training dataset, and train an AF ai for
each case. Then with each ai we generate a set of segmentations {L̂k

i } for each
image Ik.

First, we measure the actual performance of the individual AFs in this sce-
nario by computing the average Dice score per class for each L̂k

i compared to the
reference manual segmentation Li (Fig. 1a). The rows of the matrix in Figure 1a
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Method
Training All Evaluation All

complete core enhancing complete core enhancing

Std. Forest 75.0±15.2 63.8±29.1 44.9±36.8 74.3±16.4 62.7±28.0 51.6±32.5
AF Pr.Avg. 64.2±30.2 50.0±33.8 40.1±36.9 64.3±29.4 46.9±32.7 43.1±33.2
AF STAPLE 76.6±17.3 62.6±23.8 47.0±35.4 76.5±18.0 62.9±25.2 52.1±31.5

Table 1: Quantative summary of results on complete BraTS 2013 data, including
training (leave-1-out validation), and evaluation. Please see also Fig. 2.

show the performance of different AFs for a given test image, which is relevant
for atlas weighting. For example, one can observe that AF-14 seldom performs
well. We observe a high variance of performance for the individual AFs, which
was the initial motivation for this work. Please note the high values on the di-
agonal (training and testing on the same image), which shows the over-training
property of AFs.

Second, we measure the ability of STAPLE to estimate the performance of the
individual AFs, without access to reference labels or any prior information (Fig.
1b). For each test case k we apply STAPLE to candidate segmentations {L̂k

i }i6=k,
which yields performance estimates for each AF ai. These are quantified by
computing (excluding the diagonal) the correlation of the actual and estimated
performance matrix (0.91), and the average correlation of corresponding rows
(0.87), showing the high accuracy of STAPLE for this task.

3.4 Evaluation on BraTS 2013

We use same settings for all experiments, but two different protocols for training
and evaluation data. For training data, we perform a leave-1-out experiment to
simulate a realistic scenario. For the evaluation data, we use all available training
atlases. For each method, we separately train and test for HG and LG.

The results are summarized in Fig. 2 and Tab. 1, and seem consistent across
the different data subsets. We observe that as expected, the original AF method
with probabilistic averaging (AF-PrAvg) [6] has significantly reduced accuracy
compared to the baseline (Std. Forest) which uses the same basic classifier. The
proposed AF-STAPLE which performs atlas weighting has the desired effect of
recovering the performance to the level of the original classifier, cf. Tab. 1, while
keeping the computational efficiency advantages of the MALP framework.

4 Discussion and Summary

We propose a segmentation method which retains the advantages of CB-MALP
(increased efficiency, ability for atlas selection) but can be applied to general
scenarios, such as brain tumor segmentation. The results show that even in such
settings, in which other CB-MALP methods are shown to fail, the proposed
approach is capable of the same accuracy as the standard learning scheme, while
using the same basic classifier method. As future work, it would be interesting to
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consider alternative classifiers, which are potentially more tuned towards specific
problems, and evaluate the effect of the proposed framework. Also, different
alternative weighting methods could be used, e.g. the probabilistic version of
STAPLE from [7], which might be more suitable for classifier-based predictions.
We believe that in the light of growing annotated databases, the ability to learn
from more similar data has the potential to provide increased accuracy, especially
for under-represented outlier cases.
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(c) BraTS Evaluation

Figure 2: Evaluation on BraTS 2013 data: Leave-1-out experiment on (a) high-
grade (HG) and (b) low-grade (LG) cases on the training data. (c) results on
the evaluation data (leaderboard and challenge). Please see also Tab. 1.


