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Abstract. The characterization of neurodevelopment is challenging due
to the complex structural changes of the brain in early childhood. To an-
alyze the changes in a population across time and to relate them with
clinical information, manifold learning techniques can be applied. The
neighborhood definition used for constructing manifold representations
of the population is crucial for preserving the similarity structure in the
embedding and highly application dependent. It has been shown that the
combination of several notions of similarity and features can improve the
new representation. However, how to combine and weight different sim-
ilarites and features is non-trivial. In this work, we propose to learn the
neighborhood structure and similarity measure used for manifold learn-
ing through Neighborhood Approximation Forests (NAFs). The recently
proposed NAFs learn a neighborhood structure in a dataset based on a
user-defined distance. A characterization of image similarity using NAFs
enables us to construct manifold representations based on a previously
defined criterion to improve predictions regarding structural and clinical
information. In particular, NAFs can be used naturally to combine the
affinities learned from multiple distances in a joint manifold towards a
more meaningful representation and an improved characterization of the
resulting embedding. We demonstrate the utility of NAFs in manifold
learning on a population of preterm and in term neonates for classifica-
tion regarding structural volume and clinical information.

1 Introduction

During early childhood, the brain undergoes complex structural changes, which
makes it challenging to characterize normal and abnormal brain development.
There is a need for identifying brain imaging biomarkers to improve the diag-
nostic and therapy. To analyze the changes and differences in a population and
to relate them with clinical information, manifold learning techniques can be
applied. Classical manifold learning techniques use the neighborhood of images,
defined, e.g., by the L2-distance of intensities, to construct manifold representa-
tions of the population. The neighborhood definition is crucial for the quality of



the resulting representation and highly application dependent. There has been
much interest in identifying and combining additional information in the mani-
fold learning step to improve the resulting embeddings. The manifold structure
of brain images has been estimated in [1] based on pairwise non-rigid transfor-
mations, whereas in [2] similarities were derived from overlaps of their structural
segmentations. In [3], shape and appearance information was combined in a joint
embedding for an improved characterization of brain development and in [4] clin-
ical information was incorporated into the embedding construction. However, in
general it is not clear how to combine and weight multiple features.

For deriving manifold representations from imaging information, typically
the whole image is used (e.g., the L2-distance between all the intensities). But
it may not be known in advance which voxels or features are important for a
given classification task and manifold learning does not provide insight into this
question. The extraction of relevant features requires prior knowledge to the
underlying data which might not be available for all applications.

Random forests, on the other hand, have shown to be a powerful approach to
feature selection and classification. In [5], they were applied to manifold learning
by deriving the pairwise similarity measures from random forest classifiers for
different modalities. Additionally, the most important features for the classifi-
cation problem could be extracted. Recently, the neighborhood approximation
forests (NAFs) [6] have been proposed which learn the neighborhood structure in
a dataset and the most discriminative features based on a user-defined distance.

In this work, we learn the neighborhood structure used for manifold learning
through NAFs. The ability of NAFs to learn on arbitrary distances enables us
to construct manifold representations for specific high-level information. NAFs
generate affinities based on co-occurrence in leaf nodes and give a natural way to
combine the affinities learned from multiple distances. We consider the problem
of classification of the data samples regarding structural and clinical information.
We train the NAFs on a population of preterm and in term neonatal MR images
based on the differences in structural volume (cerebellum and left lateral ventricle
volume) and clinical information (gestational age (GA) at scan, birth weight in
kilograms (kg) and whether oxygen was supplied after birth). Using the obtained
affinity matrices, we construct manifold representations and show their improved
performance for classification regarding the learned information. In particular,
we show that joint embeddings, obtained by combining affinity matrices from
different NAFs, are able to encode simultaneously different information.

2 Methods

Neighborhood Approximation Forests A NAF learns in a supervised man-
ner a neighborhood structure of a given dataset induced by an arbitrary notion
of similarity between images. In the training step, the algorithm uses features
based on appearance to cluster the images according to the distance function.
For testing, the learned features are used to predict the closest neighbors in
the training database of a test image. Given a population I of images, a subset



I = {Ip}Pp=1 ∈ I is used for training and each Ip is represented by a high-

dimensional intensity-based feature vector f(Ip) ∈ RQ. The population I is
equipped with a user-defined distance function ρ : I × I → R which allows the
definition of pairwise distances ρ(Im, In) between the training images.

Training phase: In the training phase N individual trees are constructed. For
each tree T , a random subset of features fT ⊂ f is selected with fT ∈ Rq, q < Q.
At each node of tree T , the algorithm divides the data samples present in the
current node into two sets. This branching of the set of images Is present in node
s is based on a binary test: for In ∈ Is, In ∈ IsR if fmT (In) > τ and In ∈ IsL if
fmT (In) ≤ τ . Here, τ ∈ R, sR and sL are the children nodes of s and fmT is the
mth component of fT . For each node in each tree, ts is optimized with respect
to the parameters m and τ such that the data samples are clustered according
to the distance function ρ in the most compact way.

Testing phase: Given a test set Î = {Îr}Rr=1 ∈ I, a test image Îr is passed
down each tree in the forest. At a node, the binary test with the parameters
learned in the training phase is applied. According to this test, the image is sent
to the left or to the right child of the current node. This is repeated until the
image arrives at a leaf node. If the leaf node contains the training image Ip,
their affinity apr is increased by one. This procedure yields an affinity matrix
A = {apr}p=1,...,P

r=1...,R
between the samples of the training and testing set.

Feature Selection: During the training phase of NAFs, the parameters m and
τ of the binary test ts in node s are optimized to obtain an optimal partitioning
of the training data samples. The parameter m denotes the component of the
feature vector fmT which is tested at the current node. There exist several ways of
determining the importance of individual features for the growing of the decision
trees. In [6], a feature is considered as important, if it is selected in the first three
levels of the trees. A more sophisticated approach was used in [5], where the
decrease in the Gini impurity criterion was measured for the individual features
in each node. In this work, we adopt the former and simpler approach. The
frequency of the selected features in the first three levels of the trees of the
forest is recorded, and the values are normalized by the number of nodes in the
tree level.
NAFs for Manifold Learning The NAFs Fρ are trained using the training
set I. For each distance function ρ, a pairwise affinity matrix Aρ ∈ RP×P =

{a(ij)ρ }i,j=1,...,P is computed, where a
(ij)
ρ reports, how often image Ij ∈ I and Ii ∈

I finish in the same node. The corresponding distance matrix Dρ is constructed

as Dρ = {d(ij)ρ }i,j=1,...,P with d
(ij)
ρ = 1 − a(ij)ρ /N , where N is the number of

trees in the forest. The matrix Dρ can now be interpreted as pairwise distances
of the image set I and can be used for constructing a manifold representation
of the training set. We employ Isomap [7], a global approach, for learning the
manifold which we found to give better embeddings than local approaches, such
as Laplacian Eigenmaps. The combination of different affinity matrices Aρk ,
k = 1, . . . ,K learned with NAFs based on user-defined distances ρk, to create
a joint embedding can be done by linear combination. That is, if the NAFs



Fρk contain the same number N of trees, the affinity matrices are additively

combined by Aρ1,...,ρK = 1
K

∑K
k=1Aρk and the components of the joint distance

matrix Dρ1,...,ρK are d
(ij)
ρ1,...,ρK = 1− a(ij)ρ1,...,ρK/N .

3 Data and Results

Data We tested the proposed approach on a population of 343 neonatal brain
T2 weighted MR images, both preterm and in term subjects, with an age range
of 26.71 − 49.86 GA at scan. For all subjects, automatic segmentation into 87
regions were available [8]. For a subset of 314 subjects, the weight at birth
in kg is known and for a subset of 212 subjects it is known whether oxygen
was supplied right after birth. In the experiments, we used this information to
construct manifold representations of the populations.

All images were skull-stripped using BET [9],corrected for bias using N4 [10]
and intensity normalized. To account for the size differences in the population,
all subjects were affine aligned to an atlas template of 37 GA [11]. A non-rigid
alignment was further applied with a large control point spacing to preserve de-
tailed differences in the images. The aligned images in the atlas space were of
size 117 × 159 × 126 with an isotropic voxel size of 0.86 mm. The images were
smoothed using a Gaussian filter with physical size of 4.3 mm in each dimension.
NAF Construction The feature vector for each image was composed of the
intensities of randomly chosen voxels inside the brain mask of the atlas template.
We chose a feature vector of length Q = 100,000. We trained NAFs for five dif-
ferent definitions of the distance function ρ: (i) FGA, ρ is age difference; (ii) FBW,
ρ is difference in weight at birth; (iii) FLVV, ρ is difference in left lateral ventricle
volume; (iv) FCV, ρ is difference in cerebellum volume. In addition, we trained a
NAF on (v) FO2 using instead of a distance function the labels to train the trees.
The parameters of the NAFs in the training phase were determinted empirically.
We used 500 trees in each forest, in each tree q = round(

√
Q) = 316 features are

evaluated, the maximum tree depth was 12 and the minimum sample size at a
leaf was 5.
Manifold Learning and Regression Isomap was applied to the affinity ma-
trices obtained by the NAFs as described in Section 2. We kept the first 20
dimensions as new embedding coordinates. To evaluate the quality of the re-
sulting embeddings, we predicted clinical and structural information for the test
images and compared it to the real values. For each embedding, we predicted the
following: (a) GA: GA at scan, (b) BW: birth weight in kg, (c) O2: O2 supply
after birth, (d) LVV: volume of the left ventricle, (e) CV: volume of the cerebel-
lum. The prediction ṽi(I) of the real value vi(I), i ∈ {GA,BW,O2,LVV,CV},
for a test image I is obtained using the weighted mean:

ṽi(I) =

∑
In∈Nk

ρ
w(I, In)vi(In)∑

In∈Nk
ρ
w(I, In)

,

where Nk
ρ is the set of k nearest neighbors of I in the training set and w(I, ·)

are the affinities of I with respect to the training images.



Experiments and Results We trained the forests FGA, FLVV, FCV, FBW and
FO2 with two different configurations. For the first option, we trained the NAFs
on the whole populations such that we get pairwise affinity matrices Ai and
corresponding distance matrices Di, i ∈ {GA,BW,O2,LVV,CV}, for the whole
populations. Isomap was applied to each Di in order to get a manifold represen-
tation of the dataset. For the evaluation of the performance in classification, we
excluded the ground truth of the current test image in the regression step. For
the second option, we performed leave-ten-out cross validations to estimate the
performance of out-of-sample predictions. Multiple forests were constructed for
each Fi, excluding ten samples each time, which were used for testing.

The regression results are shown in Table 1, where for each embedding the
correlation between predicted and real value is presented. The columns corres-
pond to the information we want to predict and the rows to the embeddings used
for prediction. It can be seen that the quality of the predictions differ significantly
between the different embeddings. All embeddings yield high correlation values
for the prediction of the GA at scan. This is due to the fact, that the appearance
of the images differ strongly between the age groups. Even the simple L2-distance
between images is able to capture those differences. This is not the case for the
predictions of the other clinical and structural information. All embeddings lead
to poor correlation values for the prediction of the birth weight or the O2 supply,
except for the embeddings based on FBW and FO2, respectively. This indicates
that it is challenging to estimate neighborhoods which capture all the structural
and functional changes in the brain. By constructing specified neighborhoods
using various similarity definition, we are able to better classify and categorize
the population according to previously defined criteria. When using leave-ten-
out cross validation, the correlation values decrease in most of the cases. This
expected effect was particularly marked for the embedding based on FO2.

Table 1. Correlation between real and predicted values by the embedding based on
normal L2-distance and NAFs as explained in Section 3.

Whole population Leave-ten-out

GA BW O2 LVV CV GA BW O2 LVV CV

L2 0.93 0.51 -0.03 0.65 0.92 0.87 0.42 0.11 0.43 0.85
FGA 0.99 0.44 0.09 0.43 0.94 0.96 0.42 0.02 0.52 0.92
FBW 0.93 0.96 0.23 0.50 0.89 0.92 0.73 0.23 0.52 0.87
FO2 0.91 0.49 0.81 0.56 0.86 0.87 0.48 0.26 0.61 0.79
FLVV 0.93 0.30 0.12 0.95 0.92 0.92 0.34 -0.01 0.89 0.90
FCV 0.96 0.55 0.16 0.49 0.99 0.95 0.50 -0.03 0.50 0.94

As an example, two embeddings, obtained with the simple L2-distance and
with FBW, are visualized through their first two embedding coordinates in Fig. 1.
The color coding is according to the weight at birth in kg. It can be clearly seen
that the embedding based on the L2-distance is not able to separate the data
samples according to birth weight, whereas the embedding based on FBW provides
a good separation.



L2-distance FBW

Fig. 1. Scatter plots of the first two embedding coordinates. Embeddings obtained
with the L2-distance (left) and FBW (right) as similarity measure. The color coding
corresponds to the weight at birth in kg.

The embeddings based on NAFs are specialized embeddings, meaning that
they are constructed to estimate the neighborhood according to one specific
criteria. The downside of this approach can be seen, e.g., for the prediction of
the left lateral ventricle volume. The embeddings based on the L2-distance, FGA,
FBW and FO2 obtain rather low correlation values in the range of 0.4 − 0.65 for
predicting the left lateral ventricle volume. However, the joint embedding, which
combines the affinity matrices of the NAFs trained on the ventricle volume and
the birth weight, as explained in Section 2, is able to predict both information
more accurately. This is shown in Table 2, where the correlation of the real
and predicted values are shown for three joint embeddings based on (i) FBW,LVV:
combination of FBW and FLVV, (ii) FBW,CV: combination of FBW and FCV and (iii)
FLVV,CV: combination of FLVV and FCV.

Table 2. Correlation between real value of clinical and structural information and
predicted values by the joint embedding as explained in Section 3.

Whole population Leave-ten-out
GA BW O2 LVV CV GA BW O2 LVV CV

FBW,LVV 0.95 0.90 0.14 0.95 0.92 0.95 0.67 0.05 0.88 0.91
FBW,CV 0.97 0.89 0.05 0.55 0.98 0.97 0.66 0.13 0.55 0.95
FLVV,CV 0.95 0.42 0.20 0.96 0.93 0.94 0.37 -0.10 0.86 0.93

Figure 2 plots the regression results using the joint embedding based on
FBW-LVV and the individual embeddings of FBW and FLVV for predicting the weight
at birth and the left lateral ventricle volume. The differences are clearly seen.
Neither FLVV is able to predict the birth weight, nor FBW to predict the volume
of the left ventricle. The correlation between predicted and real values are poor
and the root mean square error (RMS) is high. The joint embedding based on
both NAFs, however, yields correlation values of 0.90 for the birth weight and
0.95 for the lateral ventricle volume and smaller RMS.

During training, NAF selects the most discriminative features according to
the selected distance function. In Fig. 3, the features selected in the first three
levels of the trees are shown for FLVV and FGA. As expected, the most discrimi-



Fig. 2. Scatter plots for left lateral ventricle volume (top row) and birth weight pre-
diction (bottom row) based on FBW (left), FLVV (middle) and joint FBW,LVV (right).

native features in forest FLVV are in the left lateral ventricle. The most discrim-
inative features in forest FGA are found in the deep gray matter and part of the
cortex. In this regions the appearance in MR differ strongly between younger
(26-28 GA) and older neonates (37-42 GA).

Fig. 3. Features selected in the first three levels of the trees for distance based on left
ventricle volume (left: axial and sagittal) and GA at scan (right: axial and sagittal).

4 Conclusions

We have proposed a framework for manifold learning, where the pairwise similar-
ities are learned and combined through NAFs. We used the resulting embeddings
to perform classification regarding structural and clinical information. One key
motivation of using NAFs is that they provide a natural way for the combina-
tion of similarities learned from multiple distances in the manifold learning step.
In addition, the NAFs approximate neighborhoods based on arbitrary distances
and select automatically the features which are most discriminative for the given
distance function which make a priori feature extraction not necessary.

The method was applied to a population of preterm and in term neonatal
MR images. We trained the NAFs on appearance features of the images based
on differences in cerebellum and left lateral ventricle volume, GA at scan, birth
weight and oxygen supply. The resulting embeddings were specific to the criterion
their neighborhoods were trained on (structural volumes, birth weight, etc.)



and showed an accurate classification performance regarding this criterion while
embeddings based on classical similarity measures fail. In particular, we showed
how the combination of pairwise affinity matrices based on different NAFs can
improve the overall performance of the joint embedding.

Encoding simultaneously different information (clinical and image-based) in
the embeddings may help in studying abnormal brain development which is
characterized by the change in multiple biomarkers.
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