
Making radio stations and receivers from Microbits

Alexandros Tasos

Aidan Oliver Thomas Hogg

PROCESS

First, we need to sample the ‘telegraph key’ input signal, which can be

easily done through the API.

Then, we need to quantize the samples before transmitting them over the

radio.

Finally, we need to play back the sound we receive from the radio station.

INTENDED LEARNING OUTCOMES

• To give young children an introduction to

signals and communication.

• To demonstrate how a digital transmission

system works.

• To get young children excited about electronics

and the things it can accomplish. TABLE 1

ACKNOWLEDGEMENTS

We wish to thank various people for their contribution to this project:

Dr Ben Glocker (Imperial College London)

Lee Stott (Microsoft)

Peli de Halleux (Microsoft)

A special thanks should be given to Microsoft and the HIPEDS CDT for

sponsoring this project.

REFERENCES

Yotta: lancaster-university.github.io/microbit-docs/offline-toolchains/#yotta

Mircobit website: microbit.co.uk

THE CONCEPT

A simple idea:

• There's a number of radio stations (each with its own frequency) that

broadcast their own Morse code transmission.

• Each one of these radio stations uses a Microbit in order to broadcast

their transmission.

• Meanwhile, on the other side of the metaphorical fence, numerous

Microbits that work as receivers tune into a specific radio station and

output the station's signal via headphones or speakers.

• This idea is based on a DIY AM/FM radio kit.

BUILD ENVIRONMENT

License: yotta is licensed under Apache-2.0

Yotta: A module management

system for C++ and C designed

for Mbed OS, but you can use it

on the Microbit too.

SENDING MESSAGES

• The Microbit is equipped with a radio module (not to be confused with

the low range Bluetooth one).

• Each one of these radio stations uses a Microbit in order to broadcast

their transmission.

• Although intended for one-to-one communication, the radio module

API also allows us to broadcast a signal to multiple Microbits in

proximity.

• The API also supports multiple frequency channels, which means that

it will be possible for the end user to change the station they're tuned

into.

CHALLENGES

• Unfortunately, the Microbit is less powerful compared to any 90s

console sound chip (even that of the SNES).

• Maximum packet size that the radio module can send is 249 bytes.

• The GPIO pin API doesn’t let us use Pulse Code Modulation to play

back the signals received, but instead it uses Pulse Width Modulation.

• This meant that we had to make compromises in our design and

implementation.

• We originally indented for the device to perform real-time audio

transmission, however, we had to settle for Morse code transmission

due to the packet size limitation.

INPUT/OUTPUT

Well, it's actually pretty simple:

The Microbit API allows us to read and write signals from/to the GPIO

pins.

The API allows the emission and reception of digital (discrete) and the

reception of analogue (continuous) signals.

SUMMARY

The aim of this project was to develop some software on the Microbit to

teach and excite kids.

I think we achieve this in our end product “Bit Radio” which should be fun

and educational to the young user.

Future work: This concept could be taken further by using speech signals

instead of Morse code.

