
Ray Prioritization Using Stylization and Visual Saliency

Markus Steinberger, Bernhard Kainz, Stefan Hauswiesner, Rostislav Khlebnikov, Denis Kalkofen and Dieter Schmalstieg
Graz University of Technology

Abstract

This paper presents a new method to control scene sampling in complex ray-based rendering environments. It proposes to
constrain image sampling density with a combination of object features, which are known to be well perceived by the human visual
system, and image space saliency, which captures effects that are not based on the object’s geometry. The presented method uses
Non-Photorealistic Rendering techniques for the object space feature evaluation and combines the image space saliency calculations
with image warping to infer quality hints from previously generated frames. In order to map different feature types to sampling
densities, we also present an evaluation of the object space and image space features’ impact on the resulting image quality. In
addition, we present an efficient, adaptively aligned fractal pattern that is used to reconstruct the image from sparse sampling data.
Furthermore, this paper presents an algorithm which uses our method in order to guarantee a desired minimal frame rate. Our
scheduling algorithm maximizes the utilization of each given time slice by rendering features in the order of visual importance
values until a time constraint is reached. We demonstrate how our method can be used to boost or stabilize the rendering time in
complex ray-based image generation consisting of geometric as well as volumetric data.

Keywords: ray-tracing, ray-casting, volume rendering, photorealistic rendering, visual saliency

1. Introduction

A common challenge of high-quality ray-based image gener-
ation is maintaining the scene interactivity of the applications.
This interactivity is normally achieved by sacrificing some of
the image quality during the interaction and by progressively
refining the result as soon as the interaction stops. The simplest
method in this context is regular sub-sampling: rendering the
scene in a small viewport during interaction and stretching the
resulting image to the target image size using linear interpola-
tion. This method indiscriminately discards features and results
in a blurred image or block artifacts.

Adaptive sampling approaches try to assign the computa-
tional costs to regions with high image fidelity and to approxi-
mate the remaining image parts. Typically, these techniques use
features that have been detected in the image plane only. These
approaches obviously require the final result as an input for the
optimal result, which is impossible. Hence, image regions from
previously rendered frames [1] or sparsely sampled regions [2]
are used.

We investigate the key element of adaptive approaches,
which is the determination of which elements of an object can
be coarsened and which must be preserved. Figure 1 outlines
the core idea of this work.

Much perceptually based research has been performed in this
area by researchers from different communities (e.g., the Non-
Photorealistic Rendering (NPR) community). However, these
results have mostly been used for scene stylization and scene
enhancement so far. We present a new sampling strategy for
ray-based image synthesis, which uses information about the
scene, which is known to support the comprehension of 3D

shapes [3] and visually attractive images areas in general [4].
In this paper, these techniques are used to control the reduction
of ray samples and thus to achieve a higher image quality while
maintaining the same level of interactivity.

Figure 1: This figure illustrates the basic idea of our method. Rays do not have
to be equally distributed over the scene in ray-based rendering environments to
get a visually pleasing result. It is sufficient to trace rays only in areas that have
been proven to convey the shape of an object (left) for a good approximation of
the result (right).

Our implementation produces a feature buffer for every
frame that is efficient enough to be used during the ray genera-
tion as a lookup table for the required ray density. We derive a

Preprint submitted to Computer & Graphics February 20, 2012

feature priority map from the feature buffer that consists of ob-
ject space features like silhouettes, suggestive contours, ridges
and valleys, combined with image space features like the vi-
sual bottom up saliency information from previously rendered
frames. All of them affect the ray density differently. Because
different features generate different ray densities, our method
is able to support an importance-driven rendering to guarantee
the minimum desired frame rate. Even though our main fo-
cus is the efficient visualization of volumetric datasets, we also
demonstrated a way to apply our method to geometric objects
with highly complex materials in ray-traced scenes.

This is an extend version of [5], which newly introduces the
use of an image-based visual saliency analysis to capture the
impact of lightning effects which go beyond pure geometric
features and presents a thoroughly evaluation of our technique
using the HDR-VDP-2 [6] visual metric for visibility and qual-
ity predictions. The main contributions of our method can be
summarized as follows:

• A method that allows the optimization of the ratio between
the sampling rate of the scene and its resulting perceptual
quality (Section 4).

• A method to calculate the visual saliency information ef-
ficiently enough from previous frames, so that this scene
information gets applicable for a perceptually guided ray
setup (Section 4.1).

• A progressively refineable sampling pattern, which is used
to reconstruct sparsely sampled regions of the image (Sec-
tion 4.4).

• An algorithm that uses our method to guarantee frame
rates while maximizing the visual quality within the avail-
able time frame (Section 5).

• An evaluation of different object space line features to cat-
egorize them based on their abilities to enhance the image
quality and a comparison to image space saliency informa-
tion from previous frames (Section 6).

2. Previous work

Previous researchers have been concerned with the real-time
performance of ray-based image generation algorithms. Re-
cent work has introduced the exploitation of modern GPUs
for solving the brute-force full-resolution ray traversal inter-
actively, while coarse adaptive and progressive sampling ap-
proaches have been discussed since ray-tracing algorithms first
became available. We give a brief overview of recent GPU
methods and adaptive progressive rendering methods in Sec-
tion 2.1 and discuss possible scene feature computation strate-
gies in Section 2.2. A further overview of the reconstruction
techniques for sparsely sampled data is given in Section 2.3,
and previous attempts at guaranteeing minimal frame rate are
outlined in Section 2.4.

2.1. Interactive ray-based rendering
In this section, we briefly summarize the most common ap-

proaches to speed-up ray-based rendering algorithms. These

approaches can roughly be divided into algorithmic improve-
ments and the exploitation of successively available graphics
hardware features.

Adaptive progressive rendering. Adaptive approaches, such as
the one presented in this paper, aim for the best possible trade-
off between interactive frame rates and the loss of image quality,
instead of finding the maximum achievable frame rate for a full
quality image. Finding this trade-off is still an ill-defined prob-
lem, because the perception of quality differs between human
beings and between applications. However, several algorithms
exist to accelerate rendering speeds through ray reduction. The
simplest method is a regular sub-sampling with a nearest neigh-
bor interpolation. As discussed by [7] and still used in many
interactive ray based rendering systems [8, 9], this method is
prone to strongly perceivable aliasing artifacts during the in-
teraction. To deal with this problem, most related work has
investigated the impact of different sampling pattern strategies
in image space [10, 2, 11]. The sampling pattern is usually vi-
sually noticeably refined over time until a desired quality level
is reached.

Levoy reformulated the front-to-back image order volume
rendering algorithm to use an adaptive termination of ray-
tracing [12]. The subdivision and refinement process is based
on an ε threshold and does not consider human feature per-
ception and temporal coherence. Later work altered the ray
termination criteria [13] depending on the required rendering
time or used texture-based level of detail [14], topology guided
downsampling [15] or multiple resolutions of the same dataset
[16, 17].

Exploiting the GPU. Numerous rendering engines have been
developed to deal with one of the most computationally expen-
sive problems of computer graphics: ray-tracing. Besides CPU-
based libraries [18, 19], most recent GPU approaches reach re-
markable frame rates for low- to medium-complexity scenes for
rendering in full quality [20, 21]. However, screen filling scenes
or scenes with very high complexity are still too slow in order
to meet hard real-time constraints. Furthermore, rendering al-
gorithms that aim at achieving real-time performance for the
full-quality ray-casting of volume data use empty-space skip-
ping [22], iso-surface ray-casting [23, 24], ray pre-integration
[25], homogeneous region encoding [26] and many kinds of di-
rect GPU implementations [27, Chapter 39].

2.2. Important image areas

The choice of a suitable sampling pattern is crucial for adap-
tive rendering. For non-trivial systems, the pattern refinement
strategy is usually chosen depending on prominent features. In
the following paragraphs, we discuss our selected methods to
find those regions.

Image space methods. Most methods refine the image sam-
pling pattern based on image intensity variances. Early algo-
rithms assume that image areas with high frequencies require a
denser sampling than large uniform areas do [28, 2], to gain a
visually acceptable result. Later systems adapt this assumption

2

towards the limitations of the human visual system. Ramasub-
ramanian and colleagues [29] have been one of the first who
have successfully introduced an image-based perceptual thresh-
old map which steers the sampling density of a global illumi-
nation path tracing algorithm. The Ramasubramanian system
shows that it is possible to generate images with only 5-10% of
the rays which have been used for a reference solution. Their
results have visually only little to no difference to a fully com-
puted ground truth.

Another popular method to extract visually attracting image
areas is the calculation of the visual bottom-up saliency [4].
The saliency of an image is usually defined as a measure of
how much a particular location contrasts with its surroundings,
using dimensions such as color, orientation, motion, and depth.
Hence, this method is especially suitable for analyzing cluttered
scenes which are more dominated by texture rather than sharp
edges [30, 31].

Non-Photorealistic Rendering of line features. NPR deals with
salient object features, often directly in object space. Related
rendering techniques are mainly used for illustrative rendering
and in cognitive science. Cole and colleagues [3], for exam-
ple, show that object contours including the object silhouette
are also used by artists to outline scenes. Several visualization
algorithms and perceptually motivated work demonstrate that
these features can be used to simplify complex scenes for a bet-
ter understanding of the essential parts [32, 33, 34].

The features of an object or of a scene can be extracted in
various ways: meshes can be analyzed in object space or, af-
ter rendering, their projection can be analyzed in image space.
Similar methods apply to volumetric data sets, where the ob-
ject space contains a voxel grid instead of a set of geometric
primitives. Finding features in a rendered image has the ad-
vantage of including textures and other effects, while in object
space, more accuracy is usually available because the data have
not been discretized into pixels. Moreover, the features in ob-
ject space may be view-independent, which allows their reuse
without recomputation.

Figure 2 gives a visual impression of some sparse object fea-
tures and the visual saliency information of a rendered object
that we evaluate for ray decimation in this work. Our defini-
tions of object features are similar to those from [34] and the
definition of visual saliency is similar to that from [4].

2.3. Sparse data reconstruction

Computing only rays for important areas means that the fi-
nal image has to be reconstructed from those sparse samples.
Numerous approaches exist besides the simplest, conventional
approach of regular subsampling. This attempt requires a near-
est neighbor computation or a linear interpolation and leads to
perceivable block artifacts. A good general overview of non-
homogeneously sampled data reconstruction is given in [35].

Point-based rendering. Specialized approaches for computer
graphics can be found for point-based rendering. The widely
used pull-push algorithm [36] utilizes a pyramid algorithm for
surface reconstruction. It has been adapted for the image-space

reconstruction of under-sampled point-based surfaces [37].
Pfister and colleagues [38] extended this approach to fill the
holes between splats. Unfortunately, these approaches are not
suited for direct GPU implementations, as stated by Marroquim
and colleagues [39]. The approach of Marroquim et al. [39],
who proposed a GPU implementation for large point-based
models with elliptic box-filters and deferred shading, is also ap-
plicable to the reconstruction problem in this work. However,
its computational overhead is still higher for large viewports
than that of the method presented in Section 4.4.

Image warping. Image warping [40] is a form of image-based
rendering that allows to extrapolate new views from existing
images with per-pixel depth information. Such methods can be
useful if the changes between frames are small (i.e., during in-
teraction with high frame-to-frame coherence), so that a new
view can be reconstructed from previous frames. Artifacts oc-
curring because of occlusions and disocclusions can be solved
by a recalculation of those areas [41, 42].

2.4. Guaranteed frame rates

To the best of our knowledge, our method is the first that suc-
cessfully implements an algorithm to guarantee a certain min-
imal frame rate and still maintains an acceptable image qual-
ity for ray-based image generation. Pomi and colleagues [43]
proposed that a guaranteed frame generation time would be es-
sential for mixed reality TV studio ray tracing applications, but
they did not implement such an approach. For non-ray-based
rendering approaches, a few systems that guarantee a certain
frame rate exist. For example, [44] replaces complex objects
optimally by impostors. These examples show that several ap-
plications require guaranteed frame rates but also that this prob-
lem is not well researched yet.

3. Overview over the method

Our approach consists of two passes. First, an importance
buffer is created from object space features and image space
features with the goal of encoding the visual importance of ev-
ery image region for the perceivable image quality. The object
space features are deduced from a set of line features which
are extracted from the data set’s corresponding meshes, pro-
jected to screen space, and classified according to our evalu-
ation (see Section 6). The image space features are deduced
by performing a saliency analysis of the previously rendered
frame, warping the saliency to the current frame, and analyz-
ing the result for disocclusions. The combined feature buffer is
evaluated during the ray setup and traversal, which forms the
second pass. Given that we can assign a priority value to every
ray, it is possible to construct a rendering system that aims at
producing the best image quality within a given time frame, as
outlined in Figure 3.

We adaptively adjust the image space sampling frequency ac-
cording to the feature buffer. More rays are sent into the scene
in feature-rich areas and their vicinity, while the sampling fre-
quency for feature-poor areas is strongly decreased. The same

3

(a) (b) (c) (d) (e) (f) (g)

Figure 2: The happy Buddha object (a) rendered with different object space sparse line features (b-f) and an image space feature detector (g). Silhouettes (b),
suggestive contours (c), suggestive highlights (d), ridges (e), valleys (f) and bottom-up visual saliency (g) are evaluated for ray decimation in this work. In the
saliency image (g) dark areas correspond to highly salient regions, while white areas stand for zero saliency.

base-
geometry

frame
feature
frame

static priorities

a-prior
feature classification

…

sort according
to priorities

STOP

sparse data
frame

final image
frame

sparse data
interpolation

image
warped
saliency
frame

Figure 3: Overview of our prioritized rendering algorithm. Every ray’s priority
is computed according to Section 4.2 and is used to sort the pixels in a one-
dimensional priority queue. Additionally, the visual saliency information can
be image warped from the last frames as described in Section 4.1. The selection
of features depends on the kind of scene and can therefore be modified by the
user. The features are sorted in a priority queue and if a certain time limit is
reached, the rendering process stops. The resulting sparse data frame can be
reconstructed with the method from Section 4.4.

strategy can be used for per-ray quality parameters (such as ray
bounces, object space sampling frequency or stopping thresh-
old). Finally, we reconstruct the image by filling in color values
for pixels to which we have not previously assigned a ray. In
Section 4.4, we present a suitable method for a full image re-
construction using a fractal reconstruction pattern and an adap-
tive linear interpolation.

Our method is applicable to a ray-based rendering of geo-
metric surface meshes and to volumetric data sets. The only
difference is given by the object space feature extraction step.
For surface meshes, the feature-forming geometry is defined by
the mesh itself. Using volumes requires the extraction of mul-
tiple iso-surfaces based on an evaluation of the given transfer
function before the line features are rendered.

4. Importance-driven sampling and reconstruction

To control the frequency of the sampling pattern, we render
an importance buffer in each frame (Section 4.1). This impor-
tance buffer is filled by a projection of object space line features
to screen space combined with the result of an image space
saliency analysis from the previously rendered frame. To yield
the priority of every ray (Section 4.2), the entries from the im-
portance buffer are combined with priority values from a fractal
sampling pattern (Section 4.3).

4.1. Importance Buffer
The aim of the importance buffer is to estimate the impor-

tance of an image region for the overall perceivable image qual-
ity. A high importance value (close to 1.0) means that this area
is important for the viewer to be able to understand the ren-
dered objects. At the same time these areas will also strongly
contribute to image quality. A low importance value (close to
0.0) means that this image area does not hold visually interest-
ing features and that this region is rather homogeneous in color
and intensity. We furthermore encode information about which
areas correspond to pure background in the importance map to
omit these areas from ray-tracing. To generate the importance
buffer, we rely on object space features, which are exact and
efficient to compute, as well as image space features, which can
cover additional effects due to lighting or object textures. As
there is a partial overlap between the two methods, we com-
bine the feature-sets applying a per pixel max operator if both
kinds of features are used at the same time. To benefit from
our method, the importance buffer must be produced in a time
frame that is shorter than the savings from the main rendering
pass. Note that it is in general sufficient to compute the impor-
tance buffer at a lower resolution.

Object Space Features. To provide a sufficiently high frame
rate in the first render pass, we have extended the approach from
DeCarlo and colleagues [34] with selective GPU acceleration
techniques, which are described in Section 7. In practice, we

4

can render this step at several hundred frames per second be-
cause the features are rendered as simple OpenGL lines. These
lines are also reused from frame to frame. To simulate smooth
features and to gradually decrease the priority in the vicinity of
features, we can replace these lines by textured triangle strips,
compute a distance transform on the feature buffer, or use a
fractal pattern as described in Section 4.3. The last option pro-
vides the highest flexibility. To remove any hidden features, we
also render the underlying base mesh as fully opaque, homoge-
neous surface.

Image Space Features. Because pure object space features do
not incorporate high frequencies in textures or lighting effects
like shadows, reflections, or refractions, we also evaluate image
space features. To detect these features in image space, we rely
on bottom-up visual saliency in terms of color and intensity op-
positions [4]. As we require an image to calculate the saliency,
we face a chicken-egg problem. To determine the importance
of an image region, we require the image. To efficiently create
the image, we need to know where important areas are. Tar-
geting interactive systems, we can make use of the previously
generated view. We calculate a saliency buffer for the previous
frame building an image pyramid using GLSL shaders. Af-
terwards, the saliency buffer is image warped according to the
transformations that have been applied to the scene since the
last frame was generated. Finally, small holes in the map are
closed and big holes, probably due to disocclusions, are filled
with a medium importance value. Warping the saliency buffer
is less error prone than warping the image itself, because we
only use it as basis for the decisions of which rays to cast into
the scene and only warp from one frame to the other.

4.2. Adaptive subsampling

When the importance buffer is available, the actual ray traver-
sal starts. Every pixel of the output frame defines a possible ray
starting point which is equal to one thread in terms of GPU
stream processing. If the importance buffer contains a negative
value at the thread’s position, this ray’s thread will immediately
return and fill its corresponding position in the output buffer
with the background color. Otherwise, we consult an adjustable
ray priority table, which defines an image space sampling pat-
tern (see Section 4.3). Combining the importance buffer entry
pimp with the pattern priority ppatt, which is read from the sam-
pling priority table, we can determine a per ray priority pray.
The way the two independent priorities pimp and ppatt are com-
bined essentially captures the contribution to the image quality
that can be expected when casting a certain number of rays in
a region of a certain importance. To make this important quan-
tity adjustable, we support an arbitrary mapping function fmap

to combine these two priorities:

pray = fmap(pimp, ppatt) (1)

For an efficient implementation, we use a second-order Taylor
series approximation, whose implementation consists only of
basic and fast algebraic operations. It is defined by six fixed
parameters αi, j:

pray =
∑

i+ j≤2

αi, j · pi
imp · p

j
patt (2)

Rays are traced according to their priority pray. As the map-
ping function captures every ray’s contribution to image quality,
a fixed threshold can be used to trace rays with a high contri-
bution only. Another option is to sort rays according to pray

and use the available time slot to draw the rays with the highest
contribution (see Section 5). The way that fmap and thus the
α values are chosen, controls the influence of the importance
buffer on the output image. Low weights for terms dominated
by pimp will result in a nearly uniform pattern, while a high
contribution of pimp creates samples at the feature areas only. A
good trade-off between these extremes is a method that creates
a dense sampling pattern along important features while reduc-
ing the number of samples along the transition from a feature to
feature-less areas. Lower priority features would thus receive
a lower sampling density than would higher priority features.
Homogeneous areas would contain only a few sampling points
(see also Figure 8). All non-background rays, which have not
been traced, are subject to a reconstruction step as described in
Section 4.4.

In practice, we have used a rather simple choice for the α
values: α2,0 = α0,2 = 0 and αi, j = 0.5 ± 0.2 for all remain-
ing terms. However, an optimal mapping function fmap takes
information about the rendered objects into consideration. Im-
ages of strongly transparent objects naturally show few homo-
geneous areas; thus, increasing the influence of ppatt (increasing
α0,1 and α0,2) will have a positive influence on the image qual-
ity. Nearly opaque objects with low color variation will benefit
from an increasing influence of pimp (increasing α1,0 and α2,0),
as most variation in color appears along the feature regions.

4.3. Sampling pattern
The choice of an incrementally refineable sampling pattern

is crucial to smoothly add detail to transitions between fully
traced areas and a coarsely traced background. The design of
this sampling pattern should further consider the possibility of
interpolating the resulting ray pattern efficiently. Both problems
can be addressed by defining a fractal sampling scheme that
considers only two local shapes: a square and a diamond (45◦

rotated square). To define the sampling pattern, we start with a
square pattern and a power of two, which defines the maximal
distance between rays. In practice we place a ray every 8 × 8
pixel. In the next step, we place a sample at the center of the
square which splits every square into four triangles. Together
with the surrounding squares, which are also augmented with
an additional sample, a diamond pattern results. The density of
this pattern can be increased by placing a ray at the center of
each diamond. This procedure leads again to a uniform square
pattern. Repeating these steps places rays at exactly the cen-
ters of pixels until every pixel is covered with a single sample.
The associated priority values are deduced by starting with the
maximum priority and linearly decreasing the priority with each
new shape. The whole procedure is outlined in Figure 4. The
pattern can be refined locally and thus increase the sampling
density for arbitrarily sized regions.

5

Figure 4: We use a sampling priority pattern similar to that outlined in this
figure. For illustration reasons, this figure shows a much finer grid than would
be used in reality. Blue defines the initial rays with priorities 1.0. With every
sampling step, the pattern becomes finer, and the priority decreases (color coded
in the figure).

4.4. Image reconstruction

To improve the quality of the reconstructed image, we have
investigated methods to fill areas for which no rays have been
traversed. We focus on reconstructing without losing much per-
formance. Our approach linearly interpolates samples based on
the fractal pattern presented in Section 4.3.

Various methods exist for interpolating non-homogeneously
sampled data [35]. However, our sampling pattern allows us to
combine the choice of ray locations with their interpolation and
compute both steps efficiently. A pixel contained in the interior
of a square pattern can be constructed with a bilinear interpola-
tion from the four anchor points defining the square. Because
the diamond shape is a rotated square, we only need to rotate
the pixel position accordingly to enable a standard bilinear in-
terpolation for this shape.

The transition from one interpolation density to the next re-
quires an additional step, as up to three anchor points might be
missing. In this case, we have to interpolate the missing an-
chor points from the coarser pattern first. From another point
of view, we add a ray according to the pattern described in Sec-
tion 4.3, but instead of tracing it, we interpolate its value from
the already given rays. As this new anchor point is placed ex-
actly in the middle of the already existing ones, the linear in-
terpolation breaks down to an evenly weighted mixture of the
four anchor points. For an efficient implementation, we have to
make sure that we do not create a dependency chain when grad-
ually decreasing the sampling density. If the sampling density
is decreased too abruptly, not enough lower density rays will
be available to construct the missing points for the next higher
density. For maximum performance, we make sure that the im-
portance buffer is smoothed sufficiently, such that enough rays
are traced to construct all of the missing anchor points in a sin-
gle step.

5. Guaranteed frame rate rendering

For a continuous rendering scenario with a good frame-to-
frame coherence, we can build a reactive rendering system that
adjusts the number of traced rays depending on the time needed
for previous frames. This step is possible by dynamically ad-
justing the threshold that defines which rays shall be rendered,
i.e., by decreasing α0,0 by a fixed value if the frame rates are
too low. If the scene is static and the camera is still, the rays
traced in the previous frame are reused, and we progressively
add new rays by increasing α0,0. Thus, the image converges to
the highest quality.

There are scenarios in which the aforementioned approach
will fail. An unexpected load on the GPU, complex objects pop-
ping up in the scene, or highly different viewing positions pro-
hibit us from deducing enough information for the next frame.
However, in these cases, we can still rely on the ray priorities to
guarantee the given update rates. We require an additional sort-
ing step before the actual ray tracing is conducted. Every ray’s
priority is computed according to Section 4.2 and inserted into a
one-dimensional priority queue. In this scenario, the parameter
α0,0 is irrelevant, because it has no influence on the sorting or-
der. During the following rendering step, each block of threads
fetches a set of rays from the front of the queue and processes
them. This step is repeated until the available time frame is
nearly over. The use of this priority queue guarantees that the
available time is spent on rays that have been classified as being
the most important. For the sorting itself, we use a fixed num-
ber of buckets instead of completely sorting the queue to in-
crease performance. As we cannot guarantee that all elements
within a bucket will be processed, we randomize the order in
every bucket. Otherwise, the render order for similar ray prior-
ities would match the insertion order, and the sampling density
might thus only increase locally.

Our experiments have shown that the reconstruction step’s
execution time is very short and has little variation. We can thus
measure an upper bound for this step in the initialization phase
and reduce the time frame during the rendering accordingly to
have enough time for the reconstruction step. This setup en-
ables us to output a frame within the desired latency. The time
measurement is performed on the graphics card itself, which al-
lows each block of threads to work autonomously without syn-
chronization via the host. For static scenes, we can again use
our system for a progressive rendering. As low priority rays are
still present in the queue after the time frame is over, we can
simply re-launch the rendering kernel right after presenting the
current quality level. In this way, the next set of rays are traced
within the next time frame, and we are able to progressively
update the scene with the next lowest ray importance level.

6. Feature Classification

To evaluate how features improve the visual quality of the re-
sult, we have tested selected volume-rendered objects with dif-
ferent transfer functions and ray traced objects with and without
textures and different physical properties (i.e., different reflec-
tion and refraction coefficients). Rendering at a lower resolu-

6

tion with bilinear interpolation served as a base-line condition.
The upper visual quality bound is given by the ground truth (ray
tracing at full resolution). We evaluate subsequently how the
image quality improves when the number of rays cast into the
scene is increased. Rays are subsequently added according to
their importance defined by tested feature evaluation strategy.

To quantify the visual improvements of different features, we
use the currently most advanced image comparison metrics, the
recently published HDR-VDP-2 [6] method. Image compari-
son means for our application to compare an image, which has
been produced by our method, to the fully sampled ground truth
image. HDR-VDP-2 is a very useful tool for predicting the vi-
sual quality as it is perceived by a human observer. The method
provides two different comparison metrics.

The first metric is the visibility metric Pmap, which gives an
image in which each pixel represents the probability of detect-
ing a difference between the two input images. To derive a
single quantitative difference measure from this map, we com-
pute its average value. This value can be seen as the average
probability of detecting a difference between the fully traced
ground truth image and the coarsely traced image. The second
metric estimates a quasi-subjective mean-opinion-score qual-
ity predictor QMOS , which would normally require an extensive
user-study. Therefore, the authors of HDR-VDP-2 have tested
over 20 different variations of value pooling strategies and com-
pared their predictions to two different image quality databases.
HDR-VDP-2 revealed to be the best visibility and quality pre-
dictor [6] at the time of this work.

Figure 5 shows that all feature classifiers improve the im-
age quality during interaction, compared with the conventional
regular subsampling rendering. We believe the region between
5% and 100% of cast rays is the most interesting for our ap-
proach. It yields acceptable image qualities according to the
mean-opinion-score quality measure QMOS . In this region, the
average probability of detecting a difference between the full
quality image and the image rendered with a reduced number of
rays Pmap is approximately twice as high for the conventional
regular subsampling approach than for any of the proposed fea-
ture detection methods. We observed that the image-based fea-
ture detector based on visual saliency performs very well for
low ray counts, while its performance is approximately equal
to the object space detectors for medium to high ray counts.
In terms of object space feature detectors, using a combina-
tion of exterior silhouettes and contours works best. Using the
exterior silhouette leads to the best result for objects with a
low interior feature count (e.g., glass objects). For volumet-
ric objects, the exterior silhouette initially does not necessary
improve the image quality, because it might cover the whole
dataset and exclude the (probably more important) internal fea-
tures. Ridges and valleys as well as suggestive contours and
highlights overall contribute less to image quality than contours
or silhouettes. If strongly textured objects are rendered, object
space line features cannot predict the visual outcome, which re-
sults in a performance comparable to conventional regular sub-
sampling. However, applying our image space visual saliency
measure significantly increases the image quality.

Based on our observations from automatic tests, we first

 0% 5% 20% 50% 100%
0

0.1

0.2

0.3

0.4

0.5

Number of Rays

Geometric Objects: P
map

 0% 5% 20% 50% 100%
0

20

40

60

80

100

Number of Rays

Geometric Objects: Q
MOS

 0% 5% 20% 50% 100%
0

0.2

0.4

0.6

0.8

Number of Rays

Volumetric Objects: P
map

 0% 5% 20% 50% 100%
20

40

60

80

100

Number of Rays

Volumetric Objects: Q
MOS

 0% 5% 20% 50% 100%
0

0.2

0.4

0.6

0.8

1

Number of Rays

Textured Objects: P
map

 0% 5% 20% 50% 100%
0

20

40

60

80

100

Number of Rays

Textured Objects: Q
MOS

regular subsampling silhouettes

contour suggestive contours and highlights

ridges and valleys

warped saliency

Figure 5: These graphs compare the render quality in terms of the visibility
(Pmap) and mean-opinion-score quality (QMOS) reached by tracing a certain
number of rays according to different feature classifiers. The left column shows
the result for the difference predictor Pmap and the right columns shows the re-
sults obtained for the mean-opinion-score predictor QMOS . Each row represent
a different use case scenario, whereas the numerical results were obtained from
averaging multiple data sets of varied complexity. For visual examples of the
different classifiers, please see figure 2.

roughly classify the object space line features into strong visual
features and medium visual features. We do not introduce the
class weak visual features here because we have already con-
sidered regions on/in an object with no response to any feature
extraction algorithm as regions with a low image signal fre-
quency. Our experiments show that contours in particular lead
to a much better relative perception during the scene interaction
for our tested scenes. Exterior silhouettes also yielded a good
result in all of the tested scenes. Therefore, we categorize con-
tours as strong features (along with the external silhouettes as a
subset of contours) and the remaining ones as medium features.
In Section 5, we directly use the results from Figure 5 to define
static feature priority lookup tables for each separate feature in
a numerical way. Using the values measured in this section,
we can provide good default values for the priority lookup ta-
bles. However, a user is still able to alter these priorities in our
system.

7

It is desirable to evaluate the importance of different features
for every frame independently. For a fully automatic evalu-
ation of the image quality improvement of different features
per frame, obtaining the ground truth is necessary, which is
of course not feasible during runtime. Therefore, users can
alter the proposed feature ranking in our system during run-
time. Preliminary experiments with this option have shown that
users tend to fully disable object space features such as sugges-
tive contours, suggestive highlights, ridges and valleys to gain
higher frame rates. These features have also shown a low vi-
sual improvement during our offline evaluation as previously
outlined. Most users preferred to disable the image space fea-
ture generation based on visual saliency for untextured objects
and volumetric datasets. For textured objects, most users ex-
clusively used the image space visual saliency warping for the
importance buffer generation.

7. Implementation

In this section, we describe the implementation details of our
rendering pipeline as shown in Figure 6. The preprocessing
and feature generation stages use a combination of OpenGL and
CUDA. We have implemented the main part of our method as
part of the OptiX SDK [21], which we have enhanced with vol-
ume rendering abilities. OptiX provides a C++/CUDA-based
programming interface, which is specialized for ray-tracing
applications. Because several materials, like the glass effect,
which has been used in this work, are already implemented in
the SDK, we only had to extend the framework to include a
volume material and specialized ray generation programs (cam-
eras) to support our method.

In OptiX, a simple ray-tracing program normally consists of
a combination of a hit function, a trace function, a miss func-
tion, and a camera for the ray setup. The main functions are
executed per ray. The hit function is used to intersect rays
with object surfaces in the scene. The trace function evaluates
the color contribution of a ray between two intersections, and
the miss function fills rays that hit no geometry with a defined
background color. These functions are implemented in separate
CUDA files, which are preprocessed by the OptiX SDK.

7.1. Mesh extraction
The object space feature evaluation requires a smooth surface

mesh. At that stage, we distinguished between a pure geomet-
ric input for ray-tracing applications and volumetric data sets
for a direct volume ray-casting. In the first case, an input mesh
is directly available for the mesh preparation step. The second
case requires an intermediate step depending on the used vol-
ume transfer function and the volume histogram. In our case, a
transfer function is defined by several color gradients, mapping
a certain intensity range to a defined color and opacity. One
can also define high dimensional transfer functions for a better
visual result (e.g., using the gradient magnitude as a second di-
mension, as proposed by [45]). However, for an iso-surface ex-
traction, the peak value of the direct (1D) mapping gradients or
the projection of the color gradient’s opacity peak to the inten-
sity axis for high-dimensional transfer functions together with

Volume

Mesh

Extraction

Geometry

Mesh

Preparation

NPR

Line Feature

Rendering

Previous

Color Buffer

Visual Saliency

Analysis

Previous

Depth Buffer
Feature

Priorities

Image Warping

Hole Closing +

Disocclusions

Object Space

Feature Buffer

Image Space

Feature Buffer

Feature Buffer Combination

Importance Buffer

Ray Priority Evaluation

+ Ray Sorting

Sampling

Priorities

P
re

p
ro

ce
ss

in
g

Priority Queue

Ray Tracing

Sparse Data Frame

Fractal Interpolation

Color Frame

Figure 6: The rendering pipeline used for our perceptually guided ray tracing.
Red boxes denote data objects, green boxes represent CUDA kernels, orange
boxes indicate shader based OpenGL rendering, and blue boxes represent Optix
Kernel calls.

the peak of the volume histogram is sufficient. Consequently,
we define the necessary iso-values for a multi-iso-surface ex-
traction as the highest peaks of the volume’s histogram, if the
transfer function is not zero at that position. We use a fast GPU-
accelerated marching cubes implementation (CUDA version of
the marching cubes [46] algorithm) to extract the iso-surfaces
whenever the transfer function is changed. Because the result-
ing meshes are over-tessellated, we simplify this mesh with a
GPU-based simplification method as described in the following
paragraphs.

7.2. Mesh preparation
The quality and size of surface meshes, used as inputs for our

algorithm, vary dramatically. Ray-tracing applications are of-
ten applied to high quality meshes with hundreds of thousands
of triangles. The iso-surface meshes extracted from volumes
are known to be noisy and often contain lots of small trian-
gles, which can be merged without a loss in quality. We thus
use a combination of mesh smoothing [47] and mesh simpli-
fication [48] to generate meshes that fulfill our demands: (a)
the mesh contains little noise, (b) the number of faces is low
enough to generate the feature buffer quickly, and (c) main fea-
tures from the original mesh are conserved at the according po-
sition.

Our algorithm successively applies Taubin smoothing, mesh
simplification and another instance of Taubin smoothing. The
first smoothing step is especially important for iso-surfaces ex-
tracted from a volume. Taubin smoothing preserves the volume

8

of the mesh and thus also conserves the location of remain-
ing features. Our implementation of the mesh simplification
method is run once per mesh as a preprocessing step and does
not include any view-dependent simplifications. A static sim-
plification based on a fixed error metric turned out to be suffi-
cient for our demands. Both algorithms allow a highly parallel
GPU-based implementation, which enables low latency on in-
put data changes. The overall process takes up to a second,
depending on the mesh complexity and the number of peaks in
the transfer function.

7.3. NPR Line Feature Rendering

The object space feature frame is rendered by using an ex-
tended version of the publicly available framework provided
by [34], which is based on the Princeton Trimesh2 library. To
provide high frame rates for very complex objects, we extended
this library with GPU-accelerated calculations. Therefore, we
moved all per-frame calculations (e.g. normal vector × viewing
vector per geometry vertex) to CUDA kernel functions and at-
tached the line-output to an OpenGL Vertex-Buffer object. This
vertex buffer is subsequently rendered into an OpenGL Frame-
buffer object, which is concurrently mapped as a texture in the
OptiX context.

For volume rendering, we have also attempted a direct fea-
ture line extraction as proposed by Burns et al. [33]. Experi-
ments with the Burns system have shown that the frame rates
are not as high as those obtained with iso-surfaces, which we
use with the DeCarlo system, especially for very large vol-
umes and multiple transfer function peaks. This fact can be
explained by the difference in the order of complexity when
processing a surface (O(n2)) compared to processing a volume
dataset (O(n3)). Because iso-surfaces for the feature frame gen-
eration only have to be recalculated when the transfer function
changes, we have decided to use the feature extraction approach
from De Carlo et al. However, it would also be possible to use
the approach of Burns et al. because it also shows frame rates
that are high enough to meet our two-pass rendering criteria for
certain cases.

7.4. Visual Saliency Analysis

To generate the image space feature frame, we require a pre-
viously rendered frame. In order to match the current view as
closely as possible, we use the last rendered frame and com-
pute its bottom-up visual saliency [4]. We use GLSL shaders to
convert the image into the CIELab space and to build the image
pyramid required for the saliency computation. To efficiently
build the image pyramid, we applying separable Gaussian fil-
tering with multiple render targets, each representing a differ-
ent scale. In a final pass, the saliency of each pixel is computed
from the image pyramid.

7.5. Image Warping and Hole Closing

The saliency buffer is mapped as a texture in the OptiX con-
text. In a first launch, we use the depth information from the
previously generated frame to warp the saliency buffer to match
the current view. Because the previously generated frame was

also constructed using our adaptive method, its depth infor-
mation may be available as a sparsely populated buffer only.
Hence, holes may arise during the warping process. In a sec-
ond pass, we close these holes using a nearest neighbor search
with a search frame size chosen according to the sampling pat-
tern of the last frame. If no warped information is found in the
vicinity of the target position, the hole most likely stems from
a disocclusion. We fill these holes with a medium importance
value of 0.5. This empirically determined value proved to be a
good compromise between ignoring unknown previously hid-
den areas and rendering them in full quality.

7.6. Importance Buffer and Ray Setup

The importance buffer is formed from the feature buffers us-
ing a max operator. The ray priority is determined from the
importance buffer and a fixed sampling priority as described in
Section 4.2. After the rays have been sorted according to their
priority the ray tracing is carried out. To reduce the number of
ray fetches from the priority queue, rays are fetched in groups
of 32. For the ray tracing itself we use a pinhole camera model.

7.7. Volume rendering

We have implemented a standard ray-casting approach as a
material trace function. In contrast to tight-fitting bounding
geometry volume rendering systems, the volume bounding ge-
ometry can be a simple cube or a sphere instead of a tight fitting
one. This detail reduces the necessary intersection calculations
and maximizes the thread coherence, which was stated by [21]
to be one of the most important factors for an efficient execu-
tion. Because every ray can store a certain amount of payload,
we save the entrance point and the exit point of the hit function
in every ray’s payload structure. After transforming these two
points to the volume object space, we let every ray accumulate
all of the values in between, depending on the given transfer
function. In addition, the values are shaded according to the
Phong illumination model depending on the approximated vol-
ume gradient.

7.8. Fractal Interpolation

The reconstruction based on the fractal interpolation scheme
as described in Section 4.3 requires two passes. In the first pass,
we reconstruct those anchor points, which have four available
surrounding anchor points. This pass guarantees smooth tran-
sitions from one fractal level to the next. In the second pass,
we use information form the importance buffer and the prior-
ity queue fill level to estimate the trace level in the vicinity of
the pixel. Based on this initial guess, we search for available
anchor points and interpolate the pixel’s color from the found
anchor points.

8. Results

In Section 6, we present our results on how much a certain
feature can improve the visual quality. In this section, we eval-
uate the performance of the overall system. Our test system
is equipped with an Intel i7 Processor, 6 GB System memory

9

and an Nvidia Quadro 6000 graphics card. Figure 7 shows
the increase of the visibility metric Pmap and the decrease of
the mean-opinion-score quality predictor QMOS for increasing
guaranteed frame rates. With our feature adaptive sampling
strategy, non important rays are omitted first, which increases
framerates dramatically while the image quality is influenced
little.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Frames per Second

Guaranteed Framerates: P
map

0 10 20 30 40 50
0

20

40

60

80

100

Frames per Second

Guaranteed Framerates: Q
MOS

high feature count, untextured geom. ray-tracing
low feature count, untextured geom. ray-tracing

high feature count, textured geom. ray-tracing
high feature count, volumetric ray-casting

Figure 7: These plots show the increase of the visibility metric Pmap and the
decrease of the mean-opinion-score quality predictor QMOS for increasing guar-
anteed frame rates averaged over different data sets. The viewport for this test
was 1024×768. Note that, after a certain guaranteed frame rate, the time frame
becomes too short to render the important features. This issue becomes appar-
ent in the plots by the bend between 25 and 40 fps.

The feature importance buffer can be generated with up to
1000 frames per second on a modern graphics workstation in a
moderate viewport and it does not need to be of the same size as
the render frame. For quality estimation, we use the fractal pat-
tern interpolation image reconstruction method, as described in
Section 4.4. Table 1 gives an overview of the computation times
of our method compared with the unaltered ground truth. Fig-
ures 8, 9 and 10 show the decrease of quality with an increasing
frame rate demand for different object types. The image quality
remains subjectively stable, as long as the frame rate is reason-
ably adjusted. Figure 8 also shows the pixels that are required
to calculate a full ray traversal and compares our image recon-
struction method to a regular subsampling with linear interpo-
lation. Figure 9 shows the quality decrease for a textured object
and the associated image space feature frames. Figure 10 shows
the quality decrease for a volumetric object.

9. Conclusions and future work

This paper presents a novel method for integrating perceptual
features into a rendering environment as a quality hint for the
required granularity during a ray-based rendering. To analyze
the scene for geometric features, we utilize Non-Photorealistic
Rendering techniques, which can be evaluated efficiently. To
analyze textured objects, we utilize image space saliency com-
bined with image warping to infer information from previously
rendered frames. We show that higher frame rates are achiev-
able during the scene interaction without a severe loss of image

Table 1: An overview over the average rendering times for each step and dif-
ferent objects using our approach on our test system (variance < 1%). For ge-
ometry, we tested the Stanford Dragon, Buddah, and Bunny datasets, our piggy
dataset and some simpler drinking glass meshes. For volume, we tested the
5123 datasets, MANIX and FEET, with different transfer functions. The mea-
sured times refer to a computation within a 1440 × 900 viewport. The object
space feature frame and the saliency warping was performed in full resolution,
which is in general not necessary. Note that not all rays on feature lines have
to be computed. To obtain high guaranteed frame rates that maintain a visual
appealing result, low priority features might be omitted by our algorithm from
Section 5.

geometry volume av. ray count
[ms] [ms] [#rays]

object space features 2 3 -

saliency warping 6 6 -

rays on contours 10 11 31.461

rays on ridges 8 9 23.356

rays on silhouette 5 7 9.251

rays on sug. highlights 8 9 17.122

rays on sug. contours 5 7 15.549

rays on valleys 5 6 9.646

rays on saliency 12 13 35.678

reconstruction 15 15 1.153.937

sum 76 86 1.296.000

ground truth 208 251 1.296.000

quality. Our method outperforms the state-of-the-art implemen-
tation of adaptive rendering, for example, delivered with the
OptiX SDK, in terms of speed and quality.

We have performed a quantitative evaluation of the percep-
tual features to determine their impact on the visual quality and
to show which features are best suited for adaptive ray-based
image generation. Our algorithm can therefore also be used
to achieve guaranteed frame rates by sorting the image pixels
according to the feature priorities. Our algorithm is mainly in-
tended for highly complex ray-based calculations, such as vol-
ume rendering, and for systems that require that object render-
ing does not occupy the whole computation unit (e.g., concur-
rently performed GPU-based simulation and segmentation).

We plan to perform a larger user study with different ray-
tracing materials and ray-casted volumetric objects. From such
a work, we expect a qualitatively founded classification of
salient object features to answer the question of which feature
works best for a particular type of object by means of human
perception. In this work, we show evidence that contours are
the most valuable feature of an object in terms of mathemat-
ically estimated image error and quality. However, to better
qualify the remaining, less distinctive features, a deeper analy-
sis will have to be performed with a sufficient number of human
subjects, even though the HDR-VDP-2 metric approximates the
outcome of a prospective user-study about the visual quality of
images already quite well, as shown by Mantiuk et al. [6].

10

Our Sampling Pattern Our Reconstruction Regular Sampling

fu
ll

sa
m

pl
in

g
15

fp
s

30
fp

s
40

fp
s

60
fp

s

Figure 8: This figure illustrates the decreasing ray count with increasing requested guaranteed frame rates for the Happy Buddha dataset in a 1024 × 768 viewport.
The left column shows the actual pixels that have been traced, and the middle column shows the result with our fractal pattern interpolation scheme. The 40 fps and
60 fps images of the left column are the edge images of the traced pixels to emphasize their positions in the printed versions of this paper. The right column shows
the results using a regular sub-sampling pattern with a linear interpolation for comparison.

11

(a) full sampling (b) 20 fps (c) 30 fps

Figure 9: This figure illustrates the decreasing quality with increasing requested guaranteed frame rates for the Piggy data set in a 1024×768 viewport rendered with
a complex lighting model combining procedural texturing, reflections, and refractions. The textural effects cannot be detected by the geometry-based object space
feature detectors, thus we also apply an image space saliency detector. The second row shows the response of this saliency detector applied to a four-fold-smaller
version of the previously rendered frame and warped according to the current view. The gray area next to the pig’s mouth (red arrow) indicates a disocclusion, for
which no information from the previous frame is available due to viewpoint motion. Note that the saliency response is especially high at the borders of the reflective
patches. One problem of the image space saliency evaluation is that by decreasing the number of traced rays the image gets more blurry and thus the saliency
response is also less accurate.

(a) 5 fps (full sampling) (b) 30 fps (c) 40 fps

Figure 10: This figure illustrates the decreasing quality with increasing requested guaranteed frame rates for a 5123 volumetric dataset in a 1024 × 768 viewport. In
image (b) the low priority features at the side are discarded to reach the requested frame rate. The important parts of the foot are still very well presented. To meet
40 fps (c), the number of contour forming rays is reduced, which causes coarser borders of the bones.

12

Acknowledgements

We would like to thank Morgan McGuire (Williams College)
and Marc Streit (Graz University of Technology) for their valu-
able comments and Doug DeCarlo and Michael Burns (Prince-
ton University) for providing their source code. This work was
funded by the European Union in FP7 VPH initiative under
contract number 223877 (IMPPACT) and the Austrian Science
Fund (FWF) under contract P23329-N23.

References

[1] A. Dayal, C. Woolley, B. Watson, D. Luebke, Adaptive frameless render-
ing, in: ACM SIGGRAPH 2005 Courses, SIGGRAPH’05, 2005, p. 24.

[2] J. Painter, K. Sloan, Antialiased ray tracing by adaptive progressive re-
finement, ACM SIGGRAPH Computer Graphics, SIGGRAPH ’89 Pro-
ceedings of the 16th annual conference on Computer graphics and inter-
active techniques 23 (3) (1989) 281–288.

[3] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,
T. Funkhouser, S. Rusinkiewicz, Where do people draw lines?, ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH
2008 27 (3) (2008) 88:1–88:11.

[4] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention
for rapid scene analysis, IEEE Trans. on Pattern Analysis and Machine
Intelligence 20 (11) (1998) 1254–1259.

[5] B. Kainz, M. Steinberger, S. Hauswiesner, R. Khlebnikov, D. Schmal-
stieg, Stylization-based ray prioritization for guaranteed frame rates, in:
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’11, ACM, 2011, pp. 43–
54.

[6] R. Mantiuk, K. J. Kim, A. G. Rempel, W. Heidrich, HDR-VDP-2: a cali-
brated visual metric for visibility and quality predictions in all luminance
conditions, ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2011 30 (11) (2011) 40:1–40:14.

[7] D. P. Mitchell, Generating antialiased images at low sampling densities,
ACM SIGGRAPH Computer Graphics , SIGGRAPH ’87 Proc. 14th an-
nual conference on Computer graphics and interactive techniques 21 (4)
(1987) 65–72.

[8] W. Schroeder, K. M. Martin, W. E. Lorensen, The visualization toolkit
(2nd ed.): an object-oriented approach to 3D graphics, Prentice-Hall, Inc.,
1998.

[9] I. Wald, C. Benthin, P. Slusallek, OpenRT – A Flexible and Scalable Ren-
dering Engine for Interactive 3D Graphics, Tech. rep., CG Group, Saar-
land University (2002).

[10] M. A. Z. Dippé, E. H. Wold, Antialiasing through stochastic sampling,
ACM SIGGRAPH Computer Graphics, SIGGRAPH ’85 Proceedings of
the 12th annual conference on Computer graphics and interactive tech-
niques 19 (3) (1985) 69–78.

[11] I. Notkin, C. Gotsman, Parallel progressive ray-tracing, Computer Graph-
ics Forum 16 (1) (1997) 43–55.

[12] M. Levoy, Volume rendering by adaptive refinement, The Visual Com-
puter 6 (1) (1990) 2–7.

[13] J. Danskin, P. Hanrahan, Fast algorithms for volume ray tracing, in: Proc.
1992 workshop on Volume visualization, VVS ’92, 1992, pp. 91–98.

[14] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, T. Ertl, Level-Of-
Detail volume rendering via 3d textures, in: Proc. 2000 IEEE symposium
on Volume visualization, VVS’00, 2000, pp. 7–13.

[15] M. Kraus, T. Ertl, Topology-Guided Downsampling, in: Proc. Volume
Graphics 2011, Springer Computer Science VG’11, Springer Verlag,
Wien, New York, 2001, pp. 223–234.

[16] E. C. La Mar, B. Hamann, K. I. Joy, Multiresolution techniques for inter-
active texture-based volume visualization, in: Proc. 10th IEEE Visualiza-
tion 1999, VIS’99, IEEE Computer Society, 1999, pp. 355–361.

[17] I. Boada, I. Navazo, R. Scopigno, Multiresolution volume visualization
with a texture-based octree, The Visual Computer 17 (3) (2001) 185–197.

[18] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, C. Hansen, Interactive
Ray Tracing, in: Proc. Interactive 3D Graphics, I3D’99, 1999, pp. 119–
126.

[19] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,
P. Shirley, State of the art in ray tracing animated scenes, in: STAR Pro-
ceedings of EG 2007, 2007, pp. 89–116.

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, P. Hanrahan, Larrabee: a many-core x86 architecture for visual
computing, ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2008 27 (3) (2008) 18:1–18:15.

[21] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-
bke, D. McAllister, M. McGuire, K. Morley, A. Robison, M. Stich, Op-
tix: a general purpose ray tracing engine, ACM Transactions on Graph-
ics (TOG) - Proceedings of ACM SIGGRAPH 2010 29 (4) (2010) 66:1–
66:13.

[22] W. Li, K. Mueller, A. Kaufman, Empty space skipping and occlusion
clipping for texture-based volume rendering, in: Proc.14th IEEE Visual-
ization 2003, VIS’03, 2003, p. 42.

[23] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, H.-P. Seidel, Faster iso-
surface ray tracing using implicit KD-trees, IEEE Trans. on Visualization
and Computer Graphics 11 (5) (2005) 562–572.

[24] Q. Wang, J. JaJa, Interactive high-resolution isosurface ray casting on
multicore processors, IEEE Trans. on Visualization and Computer Graph-
ics 14 (3) (2008) 603–614.

[25] K. Engel, M. Kraus, T. Ertl, High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading, in: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
HWWS’01, 2001, pp. 9–16.

[26] J. Freund, K. Sloan, Accelerated volume rendering using homogeneous
region encoding, in: Proceedings of the 8th conference on Visualization
’97, VIS’97, 1997, pp. 191–ff.

[27] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics, Pearson Higher Education, 2004.

[28] M. E. Lee, R. A. Redner, S. P. Uselton, Statistically optimized sampling
for distributed ray tracing, Proc. 12th annual conference on Computer
graphics and interactive techniques 19 (3) (1985) 61–68.

[29] M. Ramasubramanian, S. N. Pattanaik, D. P. Greenberg, A perceptually
based physical error metric for realistic image synthesis, in: Proc. 26th
annual conference on Computer graphics and interactive techniques, SIG-
GRAPH ’99, ACM, 1999, pp. 73–82.

[30] D. Gao, N. Vasconcelos, Discriminant Saliency for Visual Recognition
from Cluttered Scenes, in: L. K. Saul, Y. Weiss, l. Bottou (Eds.), Ad-
vances in Neural Information Processing Systems, Vol. 17, MIT Press,
2005, pp. 481–488.

[31] D. Gao, V. Mahadevan, N. Vasconcelos, On the plausibility of the dis-
criminant center-surround hypothesis for visual saliency., Journal of Vi-
sion 8 (7) (2008) 13:1–13:18.

[32] S. Bruckner, Interactive illustrative volume visualization, Phd-thesis, In-
stitute of Computer Graphics and Algorithms, Vienna University of Tech-
nology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria (Mar. 2008).

[33] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, D. DeCarlo, Line
drawings from volume data, ACM Transactions on Graphics (TOG) - Pro-
ceedings of ACM SIGGRAPH 200 24 (3) (2005) 512–518.

[34] D. DeCarlo, S. Rusinkiewicz, Highlight lines for conveying shape, in: In-
ternational Symposium on Non-Photorealistic Animation and Rendering
(NPAR), NPAR’07, 2007, pp. 63–70.

[35] I. Amidror, Scattered data interpolation methods for electronic imaging
systems: a survey, J. Electronic Imaging 11 (2) (2002) 157–176.

[36] S. J. Gortler, R. Grzeszczuk, R. Szeliski, M. F. Cohen, The lumigraph,
in: Proc. 23rd annual conference on Computer graphics and interactive
techniques, SIGGRAPH’96, 1996, pp. 43–54.

[37] J. P. Grossman, W. J. Dally, Point sample rendering, in: Rendering Tech-
niques 98, Springer Berlin / Heidelberg, 1998, pp. 181–192.

[38] H. Pfister, M. Zwicker, J. van Baar, M. Gross, Surfels: surface elements
as rendering primitives, in: Proc. Computer graphics and interactive tech-
niques, SIGGRAPH’00, 2000, pp. 335–342.

[39] R. Marroquim, M. Kraus, P. R. Cavalcanti, Special section: Point-based
graphics: Efficient image reconstruction for point-based and line-based
rendering, Computers and Graphics 32 (2) (2008) 189–203.

[40] L. McMillan, G. Bishop, Plenoptic modeling: an image-based rendering
system, in: Proc. 22nd annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’95, ACM, 1995, pp. 39–46.

[41] W. R. Mark, L. McMillan, G. Bishop, Post-rendering 3d warping, in:

13

Proc. 1997 symposium on Interactive 3D graphics, I3D’97, ACM, 1997,
pp. 7–16.

[42] S. Hauswiesner, D. Kalkofen, D. Schmalstieg, Multi-frame rate volume
rendering, in: Eurographics Symposium on Parallel Graphics and Visual-
ization, EGPGV’10, Eurographics Association, 2010, pp. 19–26.

[43] A. Pomi, P. Slusallek, Interactive Ray Tracing for Virtual TV Studio Ap-
plications, J. Virtual Reality and Broadcasting 2 (1) (2005) 1–10.

[44] S. Jeschke, M. Wimmer, H. Schumann, W. Purgathofer, Automatic im-
postor placement for guaranteed frame rates and low memory require-
ments, in: Proceedings of the 2005 symposium on Interactive 3D graphics
and games, I3D’05, ACM, 2005, pp. 103–110.

[45] J. Kniss, G. Kindlmann, C. Hansen, Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets, in:
Proceedings of the conference on Visualization ’01, VIS ’01, 2001, pp.
255–262.

[46] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d sur-
face construction algorithm, ACM SIGGRAPH Computer Graphics, SIG-
GRAPH ’87 Proc. 14th annual conference on Computer graphics and in-
teractive techniques 21 (4) (1987) 163–169.

[47] G. Taubin, A signal processing approach to fair surface design, in: Proc.
22nd annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’95, 1995, pp. 351–358.

[48] D. Luebke, C. Erikson, View-dependent simplification of arbitrary polyg-
onal environments, in: Proc. 24th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH’97, 1997, pp. 199–208.

14

