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Abstract. To estimate the pose of a C-Arm during interventions ther-
apy we have developed a small sized X-Ray Target including a special
set of beads with known locations in 3D space. Since the patient needs
to remain in the X-Ray path for all feasible poses of the C-Arm during
the intervention, we cannot construct a single marker which is entirely
visible in all images. Therefore finding 2D-3D point correspondences is
a non-trivial task. The marker pattern has to be chosen in a way such
that its projection onto the image plane is unique in a minimal-sized
window for all relevant poses of the C-Arm. We use a two dimensional
adaption of a linear feedback shift register (LFSR) to generate a two-
dimensional pattern with unique sub-patterns in a certain window range.
Thereby uniqueness is not achieved by placing unique 2D sub patterns
side by side but by the code property itself. The code is designed in a way
that any sub window of a minimal size guarantees uniqueness and that
even occlusions from medical instruments can be handled. Experiments
showed that we were able to estimate the C-Arm’s pose from a single
image within one second with a precision below one millimeter and one
degree.

1 Introduction

Minimally invasive focal therapy is a key requirement in modern medical pro-
cedures as for example in our motivating application, prostate cancer screening
and subsequent treatment. These techniques depend on accurate monitoring of
the operating field. A C-Arm is well suited for this task since it can easily be
adjusted to provide the desired view. However, for subsequent measurements
it is essential to know the exact location and orientation of the X-Ray device.
A constant coordinate frame through biopsy and surgery enables surgeons or
surgery robots to exactly localize and remove pathological tissue. This requires
exact knowledge of the patient’s position, which can be achieved by registration
of X-Ray images to a virtual model of the patient (e.g., previously taken vol-
umetric CT-scan). To facilitate such a registration with sufficient performance
and precision for real-time clinical applications, the position of the X-Ray de-
vice has to be known. One possibility to do this pose estimation is to attach
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tracking targets to all instruments and to the hip bone of the patient. Then
subsequent pose estimation can be performed by common tracking systems. So-
lutions to this so-called tracking problem exist in various commercial setups.
However, they are difficult to set up in the operating room due to difficult light-
ing conditions for optical systems or the presence of metallic components in case
of magnetic tracking. Moreover they are quite expensive. Therefore we propose
a method to compute the C-Arm pose directly from the image of a target object
acquired by the X-Ray device, which is robust, inexpensive, and less sensitive to
miscalibration than optical tracking systems.

Usual image based fiducial markers consist of several large black and white
areas as for example the well known Augmented Reality Toolkit markers. Using
such markers would occlude significant parts of the image, moreover it cannot
be guaranteed that any of the markers is entirely visible. Large occluded areas
constrain a desired subsequent or online 2D/3D or 2D/2D registration, not to
mention the missing image information for the surgeon. Consequently a tracking
target for C-Arm pose estimation should provide: distinct features, maximum

contrast, and little occlusion of the patient’s anatomy.

Related Work: Navab et al. [1] proposed code words located side by side,
formed by visible beads attached to a ring of acrylic glass to solve the C-Arm
tracking problem for cerebral angiography. In contrast to this approach, our
motivating clinical application does not allow a field of view containing a lot of
beads up to a complete ring target. Therefore one of the problems we treated is
that we see only a very small part of the target and consequently no complete
code words. Furthermore, we need a code which allows a certain robustness
against occlusions caused by medical instruments. Finally we take pelvis images
in lithotomy position for which a ring is not feasible since it would be too large
and therefore parts of it too close to the X-ray source.

Jain et al. [2] proposed a system to estimate the relative position of the C-
Arm between two images from stationary natural features. However, we desire
X-Ray registration to a virtual patient model which requires to know the camera
position for each image relative to a fixed origin. Furthermore, the extraction of
natural features is a time-consuming procedure. This would not be feasible for
online processing of the C-Arm poses.

2 Method

We use a plate mounted below the operating table which is prepared with a
regular grid of holes on both sides. The plate is made of acrylic glass to provide
sufficient X-Ray transparency. The holes form a grid with 5 mm × 25 mm on
one side of the plate. On the other side the same grid was used but shifted by
12.5 mm. Overall we have 78×18 available positions in our target. The challenge
is to equip these holes with beads in a suitable pattern such that the reoccurring
two-dimensional maximum of sub-pattern’s cross correlation is minimal due to
their code distance [3]. In other words, to provide unique and maximally robust



2D patterns of a certain size u × w, we seek to maximize

u−1∑

x=0

w−1∑

y=0

v(i)
x,y ⊕ v(j)

x,y, i 6= j, u ≥ 3, w ≥ 1, (1)

where v
(i)
x,y denotes the value at position (x, y) of the i-th sub-pattern out of the

list of N possible sub-patterns of size u × w extracted from the complete 2D

pattern (and likewise v
(j)
x,y). The operator ⊕ defines the binary XOR, evaluating

to 0 or 1. We require u ≥ 3 since for robust detection of the pattern the distance
between two beads has to be either 5 mm or 10 mm (i.e., there must not be more
than one “empty” position in succession). Therefore a binary “1” is represented
by a single bead, and a binary “0” by an empty space followed by a bead.

One-dimensional linear feedback shift registers (LFSR) [3] provide a certain
code unambiguity for a given length. In our case, we are interested in the min-
imum size of a 2D window such that the pattern inside the window does not
appear anywhere else in the entire code. This form exactly implies the already
formulated coding condition that the maximum of the in-between cross correla-
tions is minimal. A Gold Code LFSR [4] provides this behavior for one dimension
by connecting selected bits from two feedback shift registers to the last produced
code part with exclusive or (XOR) gates to the input of the next sequence. The
period of the code sequence depends on the register length N and the feedback
pattern. Its maximum is 2N − 1. To produce a Gold Code from an LFSR, the
XOR connected bits have to be connected according to two principal polynomials
of the same order N .

Experiments showed that a first prototype with five lines of one-dimensional
six bit LFSR code works well for C-Arm pose estimation with lateral rotation.
However, a six bit code is restricted to a maximum of 63 unique code positions,
and there are only six different code sequences of this length which can be
produced by a six bit LFSR, hence severely limiting the search space in the
perpendicular direction (i.e., craniocaudal rotation).

We therefore investigate methods to develop a target supporting also cranio-
caudal rotations of the C-Arm. In the craniocaudal case, the image window size
is in some positions too small to provide unambiguous patterns. We developed
a variant of the two-dimensional LFSR as proposed by Chen et al. [5] with an
optimal binary sequence as defined by Gold [4]. Since we are not interested in
minimizing the number of register stages for the 2D-LFSR as proposed by Chen
et al., we can use the idea of that algorithm directly by XOR cross connection of
two 1D-LFSR Gold-Codes with different principal polynomials of the same order
and N ×M register stages. Considering the length of the sides of our target, the
next best period size is 26 − 1 = 63 for the longer side.

The C-Arm has to be calibrated once with the acrylic glass target to deter-
mine its intrinsic parameters. Once these parameters are known, the C-Arm’s
orientation (rotation and translation) in 3D space can be determined. Camera
calibration is the usual way to determine the focal length, pixel dimensions,
and optical center intrinsic parameters of a camera by means of computer vi-
sion. This requires to take one picture of a large known 3D target or several



pictures of a planar calibration target (e.g., a checkerboard). Since we already
have a target with features in two parallel planes, we have chosen the second
approach. However, this step is crucial for a subsequent one-image pose estima-
tion, and it models the attributes of the system for the whole acquisition matrix.
Camera calibration is a thoroughly researched topic in computer vision and pho-
togrammetry, and several fully automatic methods have been proposed [6]. The
methods mainly differ in the underlying algebraic model of the projection pro-
cess, the method to determine the model parameters, and the calibration normal
used. Using planar normals (i.e., all reference points are coplanar [7]) is state
of the art in the computer vision community. Several images of the normal are
acquired by the unknown camera, each time from a different viewpoint. From
this information it is possible to determine the unknown parameters of the un-
derlying projection model. There is no definite rule as to how many calibration
images are needed, since this strongly depends on the used camera. In most cases,
20− 30 images are sufficient for good calibration results [8]. The operator is not
directly exposed to radiation during these calibration steps since she or he only
has to move the plate by a few degrees between the activations. Concerning the
underlying projection model, the classical camera model of central perspective
projection, nonlinear radial lens distortion, and tangential distortion has been
employed in our experiments. This amounts to 7 intrinsic camera parameters:
one for focal length, two for principal point, two radial distortion coefficients and
two tangential distortion coefficients. While many alternative models have been
proposed for the thorough description of C-Arms and X-Ray cameras, e.g. [9],
this standard is sufficient since model imprecisions are far below the accuracy
of the “virtual” reference target which was created from a CT-scan of the real
target.

Experiments: A total of 152 calibration images were acquired with different
rotation angles and inclination angles. We use a Siemens Siremobil Compact L

for our experiments. The calibration method proposed in [7] has been adapted
to the setup at hand. We get reference coordinates of all beads with a certain
measurement error from a CT-scan of the target. Scanning this target with the
same scanner as used for the patients cancels out possible inaccuracies of the
CT-scanner for later image based registration tasks. The actual C-Arm pose
estimation can subsequently be performed by placing the unique pattern target
below the patient. A resulting C-Arm X-Ray image is shown in Figure 1(a). Ef-
ficient post-processing is accomplished by the following steps. First the images
are undistorted with the previously determined fourth order polynomial approx-
imating the camera distortion (Figure 1(b)). To segment the beads, we make use
of the fact that they appear in the image at almost constant size, so they can
easily be detected and separated from the background by hardware accelerated
variational filtering methods as proposed by Pock et al. [10]. Then a random

sample consensus (RANSAC) algorithm is applied to find the vanishing point
of the pattern lines, and subsequently the lines themselves. Correction of the
perspective line distortion leads to an orthographic view of the displayed beads
(Figure 1(c)). Correspondences between them and the complete target are es-



tablished through a comparison of the observed sub-pattern with the complete
known pattern. Due to the uniqueness of sub-patterns, each bead can exactly
be located on the target. To avoid distraction by the visible beads, an optional
hardware accelerated edge preserving structural inpainting algorithm [11] can
be applied. Since the statistical texture properties of the neighborhood of the
occluded regions (in particular noise) are not taken into account, the calculated
areas are still identifiable in case of doubt. Nevertheless, an average image area
of less than two percent is occluded by the beads.

The X-Ray images will not necessarily show a complete sub-pattern of the
whole target. Some beads may be occluded by medical instruments, e.g., an ultra-
sound sensor. Therefore we use a binary XOR comparison with all sub-patterns
from the original target and choose the position which produces the smallest
error. The resulting point correspondences are used to estimate position and
orientation of the calibrated X-Ray camera relative to the target. To cope with
the presence of outliers and occlusion, we employ the direct linear transformation

[12] (DLT) method within a RANSAC framework to get an initial pose estima-
tion. This pose estimation is further refined on the inlier points by nonlinear
optimization with an iterative steepest descent optimization method [12].

(a) (b) (c) (d)

Fig. 1. A processing example for an X-Ray images taken by a Siemens Siremobil Com-

pact L including our pose estimation target. The images were taken during a prostate
biopsy. Therefore the biopsy needly and the head of the ultrasound probe are also vis-
ible. Figure (a) is an example with a quite narrow field of view, showing only a small
part of the target, but still sufficient to reconstruct the C-Arm’s pose. (b) illustrates
the distortion correction process with a 4th order polynomial. (c) shows the detected
beads after correction and denoising based on variational methods. We are using a
ROF-Chambolle model with an L1 norm in this case [10]. Line detection is done with a
RANSAC based algorithm and subsequent perspective equalization. (d) shows an op-
tional hardware accelerated inpainting [11] step to remove the beads from the resulting
image.

3 Results

X-Ray images were taken in the range of ±20◦ craniocaudal and ±30◦ lateral ro-
tation using a Siemens Siremobil Compact L during biopsy interventions. Hence
the C-Arm pose was not optimized in any way, and our method was tested with
an uncontrolled surgical scenario. The mean reprojection error during pose esti-
mation settled down between 0.67 pixels and 0.89 pixels for different datasets.



This value is calculated through cross-validation, randomly taking 75% of the
detected inliers to calculate the intrinsic camera parameters and the remaining
25% to calculate the error. For a subsequent 2D/3D registration, ideally two
images acquired at a relative angle of 90 degrees are required. Consequently, im-
ages at angles of 180 degrees are not considered. Due to mechanical restrictions
during (prostate) investigations, we only examined the limited operational range
of ± 45◦. Visible beads are masked out for subsequent registration or processed
with an optional inpainting algorithm [11] for a proper visual result. To evalu-
ate the precision of the C-Arm pose estimation, we add Gaussian noise to the
detected positions in the undistorted X-Ray images with a mean of a quarter
of the beads’ radius considering the calculated reprojection error. A subsequent
principal components analysis results in a variance maximum of 0.33 mm for
the X-Ray source translation and 0.15◦ for the X-Ray source rotation on the
principal axis. We are aware of the adverse effects of gravitation and the earth
magnetic field on calibration consistency. However, since we operate the C-arm
at a small number of repeatable poses, it is easy to compute separate calibrations
for each of them. Interior effects like pincushion/barrel distortion are sufficiently
compensated by the radial distortion model, as the reprojection error suggests.
Furthermore, Jain [2] noted that a faulty calibration has only little influence at
least on relative poses.

To evaluate our code in terms of unambiguity and robustness against occlu-
sions, we compare each sub-pattern of the same size with all other sub-patterns.
An array of XOR gates indicates the difference of two sub patterns and can
therefore be used as an error measurement. To evaluate the robustness against
occlusion, we artificially increase the number of bit-inversions until the first de-
tection failure occurs. A bit-inversion corresponds to the occlusion of a bead in
a sub-pattern or a false positive detection due to noise. Our experiments show
that 19 to 24 positions are sufficient to guarantee uniqueness assuming that
the complete pattern is optimized for the size of the target and that a binary “0”
takes two positions. However, two neighboring positions on adjacent lines can
both be empty. Therefore, the required unique sub-pattern size depends more
on the number of visible lines than on the number of visible positions within
a line. 19 positions would allow for only two occlusions according to Figure 2.
Nevertheless, in the clinical setup we detect 50 positions and more, even for
disadvantageous views (e.g., Figure 1(a)). This allows for 13 and more occluded
positions (an ultrasound probe, for example, usually occludes only 3 to 7 posi-
tions). Consequently, unambiguity is getting better the more lines are visible.
Figure 2 illustrates the growth of the required window size for an increasing num-
ber of occlusions. Above a sub-pattern size of 60 positions, half of the positions
can be occluded before a detection failure occurs.

Runtime: The runtime for a complete pose estimation is the sum of the
runtimes for image undistortion, line detection, segmentation of beads, local-
ization of the sub-pattern on the target, and camera pose estimation from the
known point correspondences. C-Arm camera calibration and analysis of the tar-
get’s CT-scan has to be done only once and can therefore be performed offline.



The RANSAC based algorithms (line detection and camera pose estimation)
are the critical parts and have to be considered for runtime measurements. The
variational methods algorithm for sphere detection is hardware accelerated (i.e.,
executed on a graphics processing unit) and hence not comparable to CPU ex-
ecuted tasks. Its runtime is in the range of 10 ms. On a Linux PC (Intel Core2
Duo 2.13 GHz CPU, 2 GB RAM, NVidia Geforce 8800 GTX) the mean runtime
for line detection and calculation of the point correspondences is 0.94 seconds,
and 0.08 seconds for subsequent pose estimation. Consequently, we are able to
reconstruct the pose of a calibrated C-Arm within one second from one image
displaying a quite small part of our target. An optional hardware accelerated in-
painting step as shown in Figure 1(d) takes 0.15 seconds for satisfactory results
with 2000 iterations.

Fig. 2. The curve shows the minimal window size containing a unique sub-pattern as
a function of the number of occluded positions. Above 60 visible positions, half of the
sub-pattern’s positions can be occluded until a detection failure occurs.

4 Discussion

We showed that we are able to estimate the pose of a C-Arm during biopsies or
surgeries within one second with a precision of 0.15◦ and 0.33 mm in the presence
of Gaussian noise. Our approach is based on a unique pattern X-Ray target which
can be placed below the operating table during intervention. Hence our technique
does not interfere with the clinical work volume. The challenge for building such
a target is to find a code with properties of a Gold-Code in two dimensions.
Codes which fulfill the properties of a Gold-Code, namely a minimization of
the maximum cross correlation between sub-patterns, are hard to find and can,
as far as we know, only be validated experimentally. A compromise between
reliable line detection and binary coding had to be found for the placement of
the beads on the target. We decided to represent a binary “1” as a position
equipped with a bead and a binary “0” as empty space followed by a bead. This
unbalanced code size impairs the Gold-Code conditions for the two dimensional
case, hence we had to optimize the generating polynomials by hand. However,



our pattern performed better in terms of unambiguity compared to a random
pattern (including our distance constraint) because we optimized the maximum
code lengths to the size of our X-Ray target in contrast to a common random
number generator. Even though a common random number generator is based
on the similar principles, the code period length is much longer for them. This
makes the size of an unambiguous sub-pattern quite large since the maximum
code distance is only given for a whole period.

An overall systematic error can be obtained by testing a complete setup with
different C-Arm types. Furthermore we are looking forward to generate a ref-
erence transformation matrix with different external tracking systems. Another
improvement of our target would be to optimize the code for only one half of
the target. From the location of the vanishing point in the image plane we can
determine if the C-Arm has been turned to the right or to the left. A smaller grid
for the pattern would indeed improve the matching accuracy for the displayed
sub-pattern, but more beads also denote more occlusion in the image or more
artificial information in case of inpainting. This could be a problem for further
image registration or for the surgeon.
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