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Abstract— A recent trends in medical virtual reality  is to 
include information from multiple sources, especially about 
physiology, into one model and one single visualization. 
Computer graphics must therefore deal with a huge amount of 
information in real time. The latest developments in computer 
graphics hardware allows not only to implement direct volume 
rendering on the graphics processing unit (GPU), but the 
emerging compute languages enable us to address volume 
rendering problems of arbitrary complexity without being 
limited to formulating visualization techniques in an arkward 
fashion to match the GPU execution model. Utilizing the 
arising new possibilities to meet next generation’s demands in 
medical visualization  
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INTRODUCTION AND RELATED WORK 

While techniques for visualization of anatomical 3D recon-
structions have been used in clinical practice for years, the 
future of medical applications is no longer oriented on 
showing images as acquired by medical technology. Added 
value arises from combining information from different 
sources as well as additional knowledge into one single 
presentation. From this fact arise today’s challenges in med-
ical virtual reality (VR) research.  

The fundamental tool for modern medical VR is volume 
rendering, the process of visualizing data stored aligned to a 
grid. The volume data can either be transformed into a set of 
geometries and subsequently rendered conventionally, or 
else the visualization is directly derived from the volume 
data set, which leads to Direct Volume Rendering (DVR). 
DVR offers higher quality images and a larger degree of 
freedom, since no data is lost during a transformation 
[Lev88]. 

Early attempts to interactively display volumes used tex-
ture mapped geometry [CN94], which is still very fast, but 
suffers from distortions and limited flexibility [LHJ99]. 
More advanced GPUs allow to visualize volumes as sug-
gested by [Lev88] using raycasting at interactive frame rates 
on consumer hardware [KW03, SSKE05]. 

A common approach to GPU-based raycasting is to ren-
der the front and back faces of the volume bounding box in 
a way such that the color encodes the entry and exit points 

of the rays in the volume [KW03]. The actual ray traversal 
is then performed by a fragment shader, which reads the ray 
coordinates from the two color buffers, fetches volume data 
from a 3D texture at regular sampling intervals, and applies 
the transfer function and color accumulation procedure. 

DVR also allows efficient implementation data intermix-
ing, a posteriori image fusion [WFZ04] as well as focus and 
context techniques [HMBG00]. Multi-dimensional transfer 
functions are proposed in [KNKI02]. DVR can be combined 
with geometric primitives like streamlines or additional pre-
computed volumes through in texture advection [LGSH06]. 

But the end of this development has not been reached 
yet, and the ever increasing demand for high quality, highly 
flexible volume imaging has increased also, especially in 
the medical field. The volume visualization should correctly 
intersect or blend with geometric parts of the scene, for ex-
ample to correctly show surgery tools [BPVR08]. 

The next generation of direct volume rendering tools 
must be able to deal with multiple huge volumes and multi-
variate, high-dimensional data sets. This can hardly be 
achieved by straight forward extensions of the conventional 
CPU vertex/fragment shader model used in today’s imple-
mentations. While the fundamental technique for prodicing 
the visualizations will still be based on raycasting, the use 
of the emerging GPU compute languages (speficically, 
CUDA) enable the use of a new class of optimized algo-
rithms. This paper gives an overview of the prototype of a 
new CUDA-based visualization system currently under de-
velopment at Technische Universität Graz. 

REQUIREMENT FOR VOLUME GRAPHICS  

Information fusion from more than one medical imaging 
source introduces a new set of problems for the visualiza-
tion. Firstly, multi-volume visualization required registra-
tion of the multiple data sets, which is mainly a computer 
vision problem and not dealt with in this paper. Secondly, 
data in the different volumes to be visualized together may 
origin in the same data acquisition procedure, but will often 
be acquired using multiple imaging technologies and conse-
quently require a multi-modal data approach. 

Data might be taken at different points in time. Time re-
solved medical datasets are for example flow examinations 



 

 

of the human vascular system or any kind of simulation. 
The visualization technique must be able to handle higher 
dimensional datasets with at least 4 dimensions. 

The raycaster also has to visualize diverse quantities 
which differ in their meaning as well as in their data format. 
These multi-variate datasets are not limited to one scalar 
attribute in their representation. Vector fields and tensor 
fields obtained for example in diffusion tensor MRI are 
common examples. 

Variations in data acquisition parameters and data 
sources lead to variations in resolution as well. Future chal-
lenges in medical applications proceed into the direction of 
multi-scale approaches. The corresponding computer graph-
ics challenge is a multi-resolution approach for the multiple 
volumes envisioned for the raycaster. Furthermore, polygo-
nal non volumetric objects have to be considered during a 
volumetric representation if an interactive volume manipu-
lation is desired.  

Finally, the images to be processed are often large data-
sets. Previously discussed requirements, especially the ne-
cessity to show multiple overlapping volumes at the same 
time, increase the memory demand beyond any reasonable 
borders. Approaches to deal with the arising problems con-
cern out-of-core rendering techniques and real-time decom-
pression of data.  

CHALLENGES IN DESIGN AND 
IMPLEMENTATION 

While widely used GPU raycasting using pixel shaders 
maps well onto the conventional graphics pipeline with pro-
grammable fragment processing, its flexibility is restricted 
due to limitations of the underlying computation frame-
work. Multi-volume rendering or combination with polygo-
nal geometry can be implemented by means of depth peel-
ing [Eve01], but only at the cost of significant memory 
bandwidth consumption. However, technological progress 
in graphics hardware over the past years increasingly favors 
compute-intensive over memory-intensive applications. 
Since the raycaster kernel (transfer function and accumula-
tion) is relatively simple, the bus traffic will become the 
bottleneck when aiming at more complex scenes composed 
from multiple volumes and polygonal objects. 

 
Real-time raycating using CUDA 

We investigate the use of CUDA [NVI08] for advanced 
volume rendering. A CUDA application consists of large 
number of concurrent threads (typically more than 1000), 
which are grouped into tightly coupled thread blocks. 

CUDA offers several benefits which are relevant in our con-
text: 
• Within each thread block, data can be cached and ex-

changed with other threads with extremely high band-
width (over 1 terabyte/second) and low latency (few nano-
seconds). If an application with an existing memory bus 
bottleneck can be rewritten to utilize these resources, per-
formance can be improved significantly. 

• The programmer has detailed control over the execu-
tion configuration (number of threads, size of thread 
blocks, synchronisation mechanisms) and can optimize 
these parameters for a particular application. 

• The CUDA memory model is more sophisticated than 
its counterpart available in shader languages. The pro-
grammer can choose between different memory access 
units (e.g., texture and linear memory) and select the unit 
which is best suited for a particular task. Moreover, arbi-
trary write operations (scattering) are supported. This al-
lows to overcome  the rather bizarre algorithms developed 
in the past to compensate for the lack of the scatter opera-
tion in shader languages. 
 

 
Figure 1: Illustration of the depth peeling step and the 

subsequent ray casting. Every time a ray leaves a vol-
ume the corresponding id of that volume is combined 
with a logical OR to the currently valid ID. The current 
ID is then used during the traversal of each ray to de-
termine in which volume the values have to be searched. 

 
Multi-volume raycasting 

Unlike earlier multi-volume approaches, which resampled 
all volumes into a common grid, we support true multi vol-
ume in order to avoid double interpolations and save mem-
ory in the case of mixed resolution volumes. Our preferred 
way to cope with overlapping volumes is to extend the 
commonly known raycasting integral  

 
by piecewise homogenous ray segments through the vol-
umes. Then the integral can be calculated within these vol-
ume segments with improvements like early ray termination 



 

 

or empty space skipping. To correctly include arbitrary ge-
ometry and get homogenous regions, intersection calcula-
tions would have to be performed. This is computationally 
not feasible for real-time applications. Therefore we pro-
pose an algorithm performed in several passes to identify 
unique volume and shape regions. The depth peeling step 
for multi-volumes is outlined in Figure 1. 

The remaining step for our approach is to determine 
which homogenous volumetric region belongs to which 
three dimensional volume texture. This is done by a sepa-
rate assignment of orthogonal coordinates for the volumet-
ric objects and geometry. An intersection of two objects is 
represented as logical OR of the object’s coordinates. A 
simple example for that coordinate scheme is also outlined 
in Figure 1. With these assumptions also geometry can be 
handled. If a ray hits the next volumetric region, and it is a 
polygonal object, it only has to accumulate the object prop-
erties like color to the current ray’s value.  

The flow chart in Figure 2 outlines the essential parts of 
the resulting multi-volume rendering approach.  

 
 

 
Figure 2: A schematic overview of the core components 
of our multi volume ray casting algorithm. 

 
Handling multi-variate data 

Multi-variate datasets can be visualized using a variety of 
techniques. Buerger et al. [BuHa08] give a good overview. 
Possible visualization techniques typically employ render-
ing of geometry, glyph and direct volume rendering.  

In the proposed rendering framework rendering multi va-
riate datasets will be handled in a way similar to multi-
volume datasets. Each attribute of the dataset will be as-
signed a separate ID bit, thus the depth peeling stage de-
scribed in Figure 1 except for the fact that multiple bits are 
inverted when entering/exiting the dataset volume, since the 
attribute images are congruent.  

 

Multi-Resolution 

Multiresolution (or level of detail) is a well established con-
cept in computer graphics to deal with data at different 
scales [LRC+03]. This is relevant in our context for at least 
two reasons. 

Firstly, we want to be able to investigate the data at vari-
ous degrees of detail. Both a coarse overview and a highly 
detailed rendering of small features should be obtained from 
the same data structure. One way to accomplish this goal is 
by means of the wavelet transform [GLDH97]. More related 
issues are discussed below. 

Secondly, data acquired by different techniques can 
largely differ in scale (e.g., the geometric resolution of a 
histogolical image is several orders of magnitude higher 
than of an MRI dataset). Despite this significant mismatch, 
we want to display those data sets concurrently to provide 
focus and context style interaction [HMBG00]. 

 
Multi-Dimension 

Multidimensional data mainly comes from time-resolved 
sources. The most obvious way is to update a multidimen-
sional volume at a certain time. Time steps can be derived 
from the real temporal distance in which the data was 
generated or real temporal distance multiplied by a consta, 
if the frame rate does not fulfill the sampling theorem oth-
erwise. The latter will result in a slow motion representation 
of the dataset. 

Most of the multidimensional visualization methods are 
straight forward. However, the challenge with multidimen-
sional datasets is the huge amount of data that should be 
handled interactivily. Since these datasets are much larger 
than conventional three dimensional datasets we have to 
either provide a fast out of core transfer of the data to the 
GPU when needed, or an adequate compressed/sub-sampled 
representation of the data. 

 
Out of core rendering 

Massive data requires effective external memory methods, 
e. g., storage layouts based on space filling curves in order 
to maximize locality, as described in [Joy06]. Glatter et al. 
use M-ary balanced search trees and an attribute space Hil-
bert curve to distribute large multivariate datasets to a num-
ber of servers and to efficiently query portions required for 
rendering based on a particular multidimensional transfer 
function [GMHG06]. 

Realtime volume rendering requires all data necessary to 
render a single image to be present in (graphics-)memory, 
which can be achieved by emplotying LOD techniques and 
dynamically manage the active levels and corresponding 
representations, as done in [LWPL07] in the context of vir-



 

 

tual autopsies. There a multi-resolution representation of the 
dataset is created based on a flat blocking scheme. LOD 
selection is done based on a screen space error measure cal-
culated after transfer function application. Higher resolution 
blocks are loaded for those dataset regions with the greatest 
impact on the output image until no more core memory is 
available. 

CONCLUSIONS  

In this paper we have outlined a design for the next-
generation direct volume rendering engine. It will use 
CUDA to overcome the limitations of current shader based 
raycasting schemes, in particular by reducing the memory 
bandwith introduced by the purely texture based storage 
schemes. The new approach will handle several advanced 
requirements simultaneously, among them support for mul-
tiple volumes, multi-modal, multi-variate and time-
dependent data sets, We have finished an early provide of 
concept, but the solution is not optimized, so it is too early 
to give performance results.  
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