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Summary. A common task in medical image analysis is the alignment of data from different
sources, e.g., X-ray images and computed tomography (CT) data. Such a task is generally
known as registration. We demonstrate the applicability of automatic differentiation (AD)
techniques to a class of 2D/3D registration problems which are highly computationally inten-
sive and can therefore greatly benefit from a parallel implementation on recent graphics pro-
cessing units (GPUs). However, being designed for graphics applications, GPUs have some
restrictions which conflict with requirements for reverse mode AD, in particular for taping and
TBR analysis. We discuss design and implementation issues in the presence of such restric-
tions on the target platform and present a method which can register a CT volume data set
(512×512×288 voxels) with three X-ray images (512×512 pixels each) in 11.8 seconds on
a GeForce 8800GTX graphics card.
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1 Introduction

Accurate location information about the patient is essential for a variety of medical procedures
such as computer-aided therapy planning and intraoperative navigation. Such applications typ-
ically involve image and volume data of the patient recorded with different devices and/or at
different points in time. In order to use these data for measurement purposes, a common co-
ordinate system must be established, and the relative orientation of all involved coordinate
systems with respect to the common one must be computed. This process is referred to as
registration.

Variational methods [5] are among the most successful methods to solve a number of com-
puter vision problems (including registration). Basically, variational methods aim to minimize
an energy functional which is designed to appropriately describe the behavior of a certain
model. The variational approach provides therefore a way to implement non-supervised pro-
cesses by just looking for the minimizer of the energy functional.

Minimizing these energies is usually performed by calculating the solution of the Euler-
Lagrange equations for the energy functional. For quite involved models, such as the energy
functional we use in our 2D/3D registration task, their analytical differentiation is not a trivial
task and is moreover error prone. Therefore many people bypass this issue by computing the
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derivatives by means of a numerical approximation. This is clearly not optimal and can lead
to inaccurate results.

In [26] automatic differentiation methods have been studied in the context of computer
vision problems (denoising, segmentation, registration). The basic idea is to discretize the
energy functional and then apply automatic differentiation techniques to compute the exact
derivatives of the algorithmic representation of the energy functional.

Recently, graphics processing units (GPUs) have become increasingly flexible and can
today be used for a broad range of applications, including computer vision applications. In
[25] it has been shown that GPUs are particularly suitable to compute variational methods.
Speedups of several orders of magnitude can be achieved.

In this paper we propose to take advantage of both automatic differentiation and the im-
mense computational power of GPUs. Due to the limited computational flexibility of GPUs,
standard automatic differentiation techniques can not be applied. In this paper we therefore
study options of how to adapt automatic differentiation methods for GPUs. We demonstrate
this by means of medical 2D/3D registration.

The remainder of this article is organized as follows: in Sect. 2 we give a brief literature
review about automatic differentiation and medical registration. We give then technical de-
tails about the 2D/3D registration task in Sect. 3, and the limitations of currently available
GPU technologies and our proposed workaround are discussed in Sect. 4. We demonstrate the
usefulness of our approach in Sect. 5 by means of experimental results of synthetic and real
data. Finally, in Sect. 6 we give some conclusions and suggest possible directions for future
investigation.

2 Related Work

Automatic differentiation is a mathematical concept whose relevance to natural sciences has
steadily been increasing in the last twenty years. Since differentiating algorithms is, in prin-
ciple, tantamount to applying the chain rule of differential calculus [9], the theoretic funda-
mentals of automatic differentiation are long-established. However, only recent progress in the
field of computer science places us in a position to widely exploit its capabilities [10].

Roughly speaking, there are two elementary approaches to accomplishing this rather chal-
lenging task, namely source transformation and operator overloading. Prominent examples of
AD tools performing source transformation include Automatic Differentiation of Fortran (AD-
IFOR) [3], Transformation of Algorithms in Fortran (TAF) [7], and Tapenade [13]. The best-
known AD tool implementing the operator overloading approach is Automatic Differentiation
by Overloading in C++ (ADOL-C) [11].

There is a vast body of literature on medical image registration, a good overview is given
by Maintz and Viergever [19]. Many researchers realized the potential of graphics hardware
for numerical computations. GPU-based techniques have been used to create the digitally re-
constructed radiograph (DRR), which is a simulated X-ray image computed from the patient’s
CT data. Early approaches are based on texture slicing [18], while more recent techniques
make use of 3D texture hardware [8]. The GPU has also been used to compute the similarity
between the DRR and X-ray images of the patient [17].

Köhn et al. presented a method to perform 2D/2D and 3D/3D registration on the GPU
using a symbolically calculated gradient [15]. However, they do not deal with the 2D/3D
case (i.e., no DRR is involved in their method), and they manually compute the derivatives,
which restricts their approach to very simple similarity measures such as the sum-of-squares
difference (SSD) metric. A highly parallel approach to the optimization problem has been
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Fig. 1. Schematic workflow of 2D/3D registration. Before the intervention, a CT scanner (a)
is used to obtain a volumetric data set (b) of the patient. With an initial estimate for the trans-
formation parameters (c), which we seek to optimize, a DRR (d) is created from the volume
data. During the intervention, a C-arm (e) is used to obtain X-ray images (f) of the patient.
The registration procedure (g) compares the DRR and X-ray image and updates the transfor-
mation parameters until the DRR is optimally aligned with the X-ray image (i.e., our distance
measure is minimized). We use three DRR/X-ray image pairs for better accuracy (only one is
shown here).

proposed by Wein et al. [27]. They perform a best neighbor search in any of the six degrees of
freedom, i.e., they require 12 volume traversals per iteration, where each traversal is done on
a separate processor.

3 Review of 2D/3D Registration

The 2D/3D rigid registration task as outlined in Fig. 1 can be formulated as an optimization
problem, where we try to find the parameter vector xopt ∈ R6 of a rigid transformation in 3D
such that the n projections Ii(x) of our CT volume (i.e., the DRRs) are optimally aligned with
a set of n X-ray images Ji, i = 1 . . .n. Formally, we try to solve

xopt = argmin
x

E(x), E(x) = ∑
i

D(Ii(x),Ji) (1)

where E is our cost function, and D(Ii(x),Ji) computes the non-negative distance measure
between two images, which is zero for a pair of perfectly aligned images. Note that the X-
ray images Ji do not depend on the parameter vector x, but each X-ray image has an exterior
camera orientation [12] associated with it (describing the recording geometry), which must
be used to compute the corresponding DRR Ii(x). The computation of the camera orientation
is out of the scope of this paper. In the following, we only deal with a single pair of images
and leave the summation in Eq. (1) as a final (implicit) processing step.

3.1 Digitally Reconstructed Radiograph

To adequately simulate the process of X-ray image acquisition, we have to understand what
the image intensities of the radiograph arise from. The X-ray intensity I reaching the detector
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Algorithm 1 The DRR rendering algorithm. All transformations are given as 4× 4
matrices in homogeneous coordinates, where T and R are translation and rotation,
respectively, C describes the center of rotation, and H is the window-to-object coor-
dinates transformation. d is the sampling distance in window coordinates. Ω is the
set of pixels (u,v) which are covered by the projection of the volume, and Ω(u,v) is
the set of sampling positions along the ray through pixel (u,v) which intersect the
volume. µ(p) is the volume sample at point p.
Require: C,R,T,H ∈ M4 (R) ; d ∈ R+

1: for all (u,v) ∈ Ω do
2: p(0)

win = (u,v,d/2,1)T {ray start position in window coordinates}
3: dwin = (0,0,d,1)T {ray step vector in window coordinates}
4: p(0)

obj = CR−1T−1C−1Hp(0)
win {ray start position in object coordinates}

5: dobj = CR−1T−1C−1Hdwin {ray step vector in object coordinates}
6: I(u,v) = 0
7: for all t ∈ Ω(u,v) do

8: I(u,v) = I(u,v)+ µ(p(0)
obj + tdobj) {take volume sample and update intensity}

9: end for
10: end for

at a pixel (u,v) ∈ Ω in image space can be expressed using the following physically-based
model [27]:

Iphys(u,v) =
∫ Emax

0
I0(E)exp

(
−

∫
r(u,v)

µ(x,y,z,E)dr
)

dE, (2)

where I0(E) denotes the incident X-ray energy spectrum, r(u,v) a ray from the X-ray source
to the image point (u,v), and µ(x,y,z,E) the energy dependent attenuation at a point (x,y,z)
in space. The second integral represents the attenuation of an incident energy I0(E) along the
ray r(u,v). The integral over E incorporates the energy spectrum of X-ray cameras.

The above expression can be simplified in several ways [27]. First, the X-ray source is
mostly modeled to be monochromatic and the attenuation to act upon an effective energy Eeff.
Second, due to the fact that X-ray devices usually provide the logarithm of the measured X-
ray intensities, we can further simplify Eq. (2) by taking its logarithm. Finally, when using
more elaborate similarity measures which are invariant with respect to constant additions and
multiplications [19], we can omit constant terms and obtain the following pixel intensities for
our DRR image:

I(u,v) =
∫

r(u,v)
µ(x,y,z,Eeff)dr (3)

The pseudo code of the DRR rendering algorithm under the parameter vector x =
(tx, ty, tz,φ ,θ ,ψ)T is given in Alg. 1. The rigid body transformation we seek to optimize in
Fig. 1(c) consists of a translation t = (tx, ty, tz)T and a rotation R = Rψ Rθ Rφ given in terms
of three Euler angles φ , θ , and ψ , where

Rφ =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 , Rθ =

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 , Rψ =

 1 0 0
0 cosψ sinψ

0 −sinψ cosψ
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3.2 Similarity Measure

We investigate the normalized cross correlation, which verifies the existence of an affine re-
lationship between the intensities in the images. It provides information about the extent and
the sign by which two random variables (I and J in our case) are linearly related:

NCC(I,J) =
∑(u,v)∈Ω

(
I(u,v)− I

)(
J(u,v)− J

)√
∑(u,v)∈Ω

(
I(u,v)− I

)2
√

∑(u,v)∈Ω

(
J(u,v)− J

)2
(4)

Optimal alignment between the DRR image I and the X-ray image J is achieved for
NCC(I,J) = −1 since we use Eq. (3) for DRR computation, but the actual X-ray image ac-
quisition is governed by Eq. (2). Our distance measure from Eq. (1) is therefore simply

D(Ii(x),Ji) = NCC(Ii(x),Ji)+1.

3.3 Iterative Solution

We chose the L-BFGS-B algorithm [28] to accomplish the optimization task because it is easy
to use, does not depend on the computation of second order derivatives, and does not require
any knowledge about the structure of the cost function. Moreover, it is possible to set explicit
bounds on the subset of the parameter space to use for finding the optimum.

4 Automatic Differentiation for a hybrid CPU/GPU Setup
In this section we address several issues that must be considered when applying AD techniques
to generate code that will be executed in a hybrid CPU/GPU setup for maximum performance.
Before we do so, however, we give a brief review of currently available computing technolo-
gies for GPUs and compare their strengths and weaknesses in the given context.

4.1 GPU Computing Technologies

The Cg language developed by NVidia [20] allows the replacement of typical computations
performed in the graphics pipeline by customized operations written in a C-like programming
language. It makes use of the stream programming model, i.e., it is not possible to commu-
nicate with other instances of the program running at the same time or to store intermediate
information for later use by subsequent invocations. Moreover, local memory is limited to a
few hundred bytes, and there is no support for indirect addressing. This makes it impossible
to use arrays with dynamic indices, stacks, and similar data structures. On the other hand,
this computation scheme (which is free of data inter-dependences) allows for very efficient
parallel execution of many data elements. Furthermore, Cg has full access to all features of
the graphics hardware, including the texture addressing and interpolation units for access to
3D texture data. Similar functionality as in Cg is available in the OpenGL Shading Language
(GLSL), which is not separately discussed here.

The Compute Unified Device Architecture (CUDA) by NVidia [23] is specifically designed
for the use of graphics hardware for general-purpose numeric applications. As such, it also
allows arbitrary read and write access to GPU memory and therefore seems to be the ideal
candidate for our implementation. However, the current version 1.1 of CUDA lacks native
support for 3D textures, so access to CT data would have to be rewritten as global memory
access, which neither supports interpolation nor caching. Such a workaround would impose
severe performance penalties, we therefore decided to use Cg since the intermediate storage
problem can more easily be overcome as we will see in the remainder of this section.
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4.2 Computing Resources

In order to properly execute both the original algorithm and its derivative, we must determine
which hardware component is best suited for each section of the algorithm. The following
components are available to us:

• the host’s CPU(s),
• the GPU’s rasterizer, and
• the GPU’s shader processors.

The CPU’s involvement in the numeric computations is marginal (its main task is to control
the workflow), we therefore did not consider the use of more than one CPU.

Due to the stream programming model in Cg, the output of the shader program is restricted
to a fixed (and small) number of values, sufficient however to write a single pixel (and the
corresponding adjoint variables) of the DRR. Therefore looping over all pixels in the image
(equivalent to (u,v) ∈ Ω in Alg. 1) is left to the rasterizer.

The core of the computation is the traversal of the individual rays through the volume
(equivalent to t ∈ Ω(u,v) in Alg. 1). Since the CT volume is constant, data can be read from
(read-only) texture memory, and the innermost loop can be executed by the shader processors.
This procedure has good cache coherence since a bundle of rays through neighboring pixels
will likely hit adjacent voxels, too, if the geometric resolutions of image and volume data and
the sampling distance are chosen appropriately.

The loops in the similarity measurement code, corresponding to the sums in Eq. (4), are
more difficult to handle, although the domain (u,v) ∈ Ω is the same as above. The reason is
the data-interdependence between successive invocations of the loop body, which must not
proceed before the previous run has updated the sum variables. We therefore employ a reduc-
tion technique [24], where the texture is repeatedly downsampled by a factor of two (n times
for an image 2n×2n pixels large) until we end up with a single pixel representing the desired
value.

The optimizer is executed entirely on the CPU and invokes the function evaluation and
gradient computation as needed for the L-BFGS-B algorithm (Sect. 3.3).

4.3 Gradient Computation

We need to compute the gradient of the (scalar-valued) cost function (Eq. 1) with respect to the
transformation parameter vector x ∈ R6. This can be done either by invoking the algorithm’s
forward mode derivative six times or by a single pass of the algorithm’s reverse mode deriva-
tive. Every pass of the original and the derived algorithm (both in forward and reverse mode)
requires access to all voxels visible under the current transformation parameters at least once
(or even several times in case of texture cache misses). Since global memory traffic is the main
bottleneck of many GPU-based algorithms, we choose reverse mode AD for our purposes to
reduce the number of read operations from texture memory.

Reverse mode AD is known to be more difficult to implement than forward mode AD.
Due to the above-mentioned memory limitations it is generally not possible to use techniques
like taping [21] and TBR analysis [14, 22] to produce adjoint code in Cg. However, since
the inner loop in Alg. 1 is simply a sum, we do not need to store intermediate values in the
derivative code (i.e., the “TBR set” of our program is empty), hence a Cg implementation is
feasible.

An additional benefit of the analytically computed gradient is its better numerical be-
haviour. When computing a numerical approximation of the gradient (e.g., based on central
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Fig. 2. A simple object with density distribution µ(x,y,z) = 1−max(|x|, |y|, |z|), x,y,z ∈
[−1,1], is translated to the left (∆x < 0) in (a), and the per-pixel contributions to the com-
ponent of the parameter vector gradient ∇E corresponding to translation in x-direction are
visualized in (b), where gray is zero, darker is negative (not present in the image), and brighter
is positive. The histogram (e) of the gradient image (b) shows only positive entries (center is
zero), indicating an overall positive value of the gradient in x-direction to compensate for the
initial translation. In a similar way, the object is rotated (∆ϕ > 0) in (c), and the gradient con-
tributions with respect to rotation around the z-axis are shown in (d). Its histogram (f) shows
a prevalence of negative values, indicating an overall negative rotation gradient around the
z-axis to compensate for the initial rotation. All other histograms are symmetric (not shown
here), indicating a value of zero for the respective gradient components.

differences), one has to carefully find a proper tradeoff between truncation error and cancel-
lation error [4]. This is particularly true with our hardware and software platform (NVidia
graphics cards and Cg), where the maximum available precision is 32 bit IEEE floating point.

4.4 Automatic Differentiation Issues

The operator overloading technique [6] for generating the algorithm’s derivative can not be
used in our case since it requires the target compiler to understand C++ syntax and semantics.
However, both Cg and CUDA only support the C language (plus a few extensions not relevant
here) in their current versions. Moreover, in order to apply reverse mode AD with operator
overloading, the sequence of operations actually performed when executing the given algo-
rithm must be recorded on a tape [6] and later reversed to compute the adjoints and finally the
gradient. This approach can not be used in Cg due to its limited memory access capabilities as
explained in Sect. 4.1.

Therefore source transformation remains as the only viable option. We implemented a
system which parses the code tree produced from C-code by the GNU C compiler and uses
GiNaC [1] to calculate the symbolic derivatives of the individual expressions. It produces
adjoint code in the Cg language, but is restricted to programs with an empty TBR set since
correct TBR handling cannot be implemented in Cg anyway as stated above. The task distri-
bution discussed in Sect. 4.2 was done manually since it requires special knowledge about the
capabilities of the involved hardware components, which is difficult to generalize. Moreover,
the derivative code contains two separate volume traversal passes, which can be rewritten in a
single pass, reducing the number of volume texture accesses by 50%.

5 Results

A visualization of the contributions to the gradient of each (u,v) ∈ Ω (i.e., each pixel in the
image) for the 2D/3D registration with a simple object is shown in Fig. 2. Figures 2(b) and 2(d)
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Fig. 3. Scatter plot of the registration error [16] before (x-axis) and after (y-axis) the registra-
tion procedure, the dot size indicates the initial rotation.

are the inputs to the final reduction pass, the sums over all pixels are the individual components
of the gradient vector ∇E. The volume was sampled with 643 voxels, average registration time
was 3.3 seconds on a GeForce 8800GTX graphics card.

Figure 3 illustrates the convergence behaviour of our 2D/3D registration method. The
method performs very reliably for an initial error of less than 20mm, where the final registra-
tion error is less than 1mm in most experiments. For a CT volume data set with 512×512×
288 voxels and three X-ray images (512× 512 pixels each), the average registration time is
11.8 seconds, which is six times faster than with numerical approximation of the gradient.
This confirms previous results that the computation of the gradient does not take significantly
longer than the evaluation of the underlying function [2].

6 Conclusions and Future Work

We discussed an approach to apply AD techniques to the 2D/3D registration problem which
frequently appears in medical applications. We demonstrated how to work around the limi-
tations of current graphics hardware and software, therefore being able to benefit from the
tremendous computing capabilities of GPUs.

Our method is six times faster than its counterpart with numeric approximation of the
cost function’s gradient by means of central differences. Its performance and accuracy are
sufficient for clinical applications such as surgery navigation. Our implementation is based on
NVidia graphics cards. Nevertheless it would be interesting to compare the performance on
equivalent cards from other manufacturers, in particular from ATI.

We intend to study more similarity measures, in particular mutual information, which
has been reported to give very good results even in multimodal settings (e.g., registering X-
ray images with a magnetic resonance volume data set). We can reuse the DRR code and
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its derivative with very few modifications, only the similarity measuring portion of the code
needs to be replaced. When doing so, we expect a similar performance gain as in our NCC
approach.

In our present work we accepted a certain degree of manual work to make the code pro-
duced by our source code transformation tool suitable for a hybrid CPU/GPU setup. It remains
an open question whether this step can be done fully automatically. We need to formalize the
conditions under which parts of the derivative code can run on the CPU or on the GPU.

It can be assumed that future versions of the CUDA framework by NVidia will include full
support for 3D textures. This will open a range of new interesting possibilities to implement
high-performance optimization methods based on AD tools.
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“Problèmes non-linéaires appliqués”. Springer (2005)
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