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PREFACE

This book is a study of algorithms for decision making with multiple objectives. It is addressed to researchers in
computational methods for decision making and optimal design: computer scientists interested in quantitative
decision support, in particular numerical optimization; engineers; mathematicians; and those working in
management science; operations research; economics and finance. Although most of the mathematics required
is reviewed in a series of comments and notes, located at the end of relevant chapters, the reader is expected to
have developed some insight in decision making and associated concepts.

The starting point is the nonlinear optimal decision problem for dynamic systems with multiple objectives under
uncertainty. An optimal decision needs to take account of possible future uncertainties. As the process unfolds,
and the uncertainty becomes known, the decision is revised and new future uncertainties are considered. This
approach to optimal decisions is formulated as a static nonlinear problem and the question of multiple objective
decision making within this framework is considered using quadratic programming, nonlinear programming,
nonlinear constrained min-max, mean-variance optimization and noncooperative Nash games. Regarding
uncertainty in multi-period decision problems, the treatment of scenario optimization is omitted from this book.
This approach utilises the probability of the scenarios at each period to evaluate the expected value of the
objective and ensure the satisfaction of the constraints arising from each scenario. It is essentially the
application of optimization algorithms to very large scale problems. The size of the problem is in particular due
to the scenarios and adds a further layer of complexity, often resolved by efficient problem formulation,
decomposition and parallel computers. Other areas not covered in this book are network optimization,
combinatorial optimization and integer programming. The algorithms and tools for these seem to be beyond the
main focus of the book.

We consider the static optimization problem with a single criterion in chapter 1 and study the optimality
conditions under equality and inequality constraints. We also describe in chapter 1, a simple and approximate
algorithm for solving the nonlinear dynamic policy optimization problem. If an approximate search strategy is
required, when the multiple objective decision is being formulated, the last two sections of chapter 1 provide an
algorithm that has been tried and tested in numerous macroeconomic decision making and engineering process
control problems. Nevertheless, it must be



pointed out that the rest of the book is devoted to the discussion of methods for which accuracy is of primary
importance.

Chapter 2 is devoted to the solution of the quadratic programming problem, encountered in chapters 3-5, for the
specification of multiple objective problems and, as a subproblem, in chapters 6, 7, 8 and 12. Three different
algorithms are considered in this chapter.

The basic view of multiple criteria is that the decision making process is a cognitive one. It is in the course of
this process that the decision maker gains an increasingly concrete knowledge of what can be done and
determines the trade-offs and targets. chapters 3-5 describe iterative methods, involving interactions with the
decision maker, for the specification of the relative weights and targets in multiple objective problems. In
chapter 5, the convergence properties of these algorithms are considered.

Chapters 6-8 cover nonlinear programming algorithms required for the solution of the optimization of a single
objective. Convex optimization is discussed in chapter 6 and an efficient version of the Goldstein-Levitin-Polyak
algorithm is studied in detail with convergence rate results. The general nonlinear programming problem is
considered in chapter 7 with a detailed study of sequential quadratic programming algorithms. For example,
considerations such as convexifying the problem in order to enlarge the region of convergence of the algorithm
and augmented Lagrangians are introduced. Techniques for augmenting the Lagrangian are discussed along
with stepsize strategies that measure the progress of the algorithm at every iteration. The rates of convergence of
these algorithms are dependent on the nature of the approximate Hessian used. These are discussed in chapter 8,
with results concerning the rates for the variable-Lagrange multiplier pair.

A competition model in the presence of multiple decision makers is considered in chapter 9. This is the case
when each objective corresponds to an agent, or player, whose actions affect the system and thereby the
objectives of other players. The aim is the computation of Nash equilibria in games. The algorithms considered
are: an asynchronous relaxation of the best replay algorithm, as well as variants of the Newton algorithm for
solving the equilibrium condition.

The mean-versus-variance multiple objective problem is discussed in chapters 10-11. This arises in decision
making under uncertainty where we consider the simultaneous optimization of the expected value of the
objective and its variance, which represents the associated risk. These are usually conflicting objectives. An
example is the classical investment portfolio problem of maximizing expected return and minimizing expected
risk. This is studied in chapters 10-11. In the former, an extension of the portfolio problem is discussed,
combining the risk of investments and exchange rates. In the latter, a study of the nonlinear case is given for
dynamic decision problems with feedbacks.

The final approach to the multiple objective problem, discussed in chapter 12, is the min-max formulation. The
optimization of the worst-case objective requires an algorithm to solve the nonlinearly constrained min-max
problem. The algorithm and its convergence rate properties are considered in detail.

The ideas presented in this book are based on experience in designing solutions to optimal decision problems in
economics, finance and engineering. These were developed over a period during which I was privileged with the
opportunity to discuss, debate and argue related questions with Robin Becker, Jeremy Bray, Kumaraswamy
Velupillai. Without their input, parts of the book would have been considerably weaker. On nonlinear
programming, I am indebted to Laurence Dixon and David Mayne for numerous informative discussions and to
Ioannis Akrotirianakis for proof reading most of the related chapters. On various aspects of uncertainty, I am
grateful for the comments and advice of Gregory Chow, David Kendrick and Martin Zarrop. Of course, none of
the above bear responsibility for any remaining errors or misrepresentations.

The book was finished during a sabbatical year and I am grateful to Imperial College for the sabbatical
programme and to my colleagues in the Department of Computing for giving me this opportunity to finalise the
project.



ALGORITHMS FOR NONLINEAR PROGRAMMING & MULTIPLE OBJECTIVE DECISIONS

Berc Rustem¸
Department of Computing

Imperial College of Science, Technology & Medicine
180 Queen's Gate, London SW7 2BZ, UK

CONTENTS

I. INTRODUCTION

1. Introduction: Optimization of a single objective

1.1 The dynamic decision problem and static optimization
1.2 Basic optimality conditions
1.3 Necessary and sufficient conditions for nonlinearly constrained optimization
1.4 A simple Gauss-Newton algorithm for optimal decision problems
1.5 A quasi-Newton implementation
1.6 Comments and notes

II. QUADRATIC PROGRAMMING ALGORITHMS & MULTI-OBJECTIVE OPTIMIZATION

2. Quadratic programming algorithms

2.1 The quadratic programming problem
2.2 Active set algorithm based on null space of the constraints
2.3 Active set algorithm based on range space of the constraints
2.4 Interior point algorithm for quadratic programming
2.5 Concluding remarks
2.6 Comments and notes

3. Multiple objective optimization. Interactive search for acceptable decisions:
updating quadratic objective weights

3.1 The multi-objective decision problem
3.1.1 Projections in ¶n

3.1.2 Motivation for updating the weighting matrix
3.2 The interactive method for determining the weighting matrix
3.3 Properties of the method: linear equality constraints
3.4 Revealed preferences, choice of preferred value and sensitivity

3.4.1 Inverse optimal control and revealed preferences
3.4.2 Choosing the desired or bliss value as the preferred solution
3.4.3 The issue of sensitivity

3.5 Concluding remarks
3.6 Comments and notes

4. Multiple objective optimization. Interactive Search for Acceptable Decisions:
updating bliss points and arbitrariness of shadow prices

4.1 Introduction: diagonal quadratic objective functions
4.2 Specifying diagonal quadratic objective functions
4.3 Diagonal version of non-diagonal quadratics and complexity of the algorithm

4.3.1 Equivalence of diagonal and non-diagonal approaches
4.3.2 Complexity of the algorithm



4.4 The arbitrariness of shadow prices
4.5 Concluding remarks
4.6 Comments and notes

5. Multiple objective optimization. Convergence and complexity of decision processes

5.1 Introduction
5.2 Polynomial time algorithms for multiple objectives
5.3 Properties of the methods: General convex and nonlinear constraints
5.4 Khachian's ellipsoid algorithm: Complexity of the decision process
5.5 Discussion of the matrix updates
5.6 Concluding remarks
5.7 Comments and notes

III. ALGORITHMS FOR NONLINEAR OPTIMIZATION & EQUILIBRIA

6. Nonlinear optimization with convex constraints: The Goldstein Levitin Polyak
algorithm

6.1 The convex optimization problem
6.2 The GLP Algorithm

6.2.1 The algorithm
6.2.2 Parallel computation using proximal optimization

6.3 Convergence of the algorithm
6.4 Unit stepsizes and superlinear convergence rates
6.5 Comments and notes

7. Nonlinear optimization with equality and inequality constraints

7.1 Nonlinear programming: augmented Lagrangian SQP algorithm
7.1.1 Convexification
7.1.2 The quadratic programming subproblem

7.2 The SQP algorithms
7.3 Global convergence of the algorithms
7.4 Convergence to unit stepsizes
7.5 An interior point algorithm
7.6 Concluding remarks
7.7 Comments and notes

8. Convergence rates of SQP algorithms

8.1 Introduction to the convergence rates of SQP algorithms
8.1.1 Studying the convergence rates of the variable and variable-multiplier pair
8.1.2 An outline of the convergence rate results

8.2 Q-superlinear rate of the variable and two-step Q-superlinear rate of the variable-
multiplier pair

8.3 Two-step Q-superlinear convergence of the variable and three-step Q-superlinear
convergence of the variable-multiplier pair

8.4 The effect of inequality constraints
8.5 Concluding remarks
8.6 Comments and notes

9. Algorithms for equilibria and games

9.1 Computation of equilibria and solution of nonlinear equations



9.1.1 Games and equilibria
9.1.2 Solution of systems of equations

9.2 Newton-type algorithms
9.3 Convergence of Newton-type algorithms
9.4 Computation of perfect foresight
9.5 Reordering systems of equations
9.6 Concluding remarks

IV . AINTYUNCERT

10. Mean versus variance optimization: The multi-currency portfolio

10.1 Introduction to portfolio optimization
10.1.1 Mean-variance optimization within a single currency
10.1.2 The effect of investments in multiple currencies

10.2 Multi-currency mean-variance portfolios
10.3 Computing the optimal portfolio
10.4 Concluding remarks
10.5 Comments and notes

11. Mean versus variance optimization: The nonlinear case

11.1 Introduction to the nonlinear problem
11.1.1 The stochastic problem
11.1.2 The decision making process under uncertainty

11.2 The sensitivity approach to robust policy
11.3 Robustness with respect to the policy objective function

11.3.1 Sensitivity and robust optimal policy
11.3.2 Mean-variance formulation

11.4 Computing expectations using Monte Carlo simulations
11.5 Robustness with respect to endogenous variables
11.6 An example
11.7 Concluding remarks
11.8 Comments and notes

12. Uncertainty with multiple scenarios: Discrete min-max algorithm for equality
constraints

12.1 The min-max approach to multiple objectives
12.1.1 The decision problem with rival objectives
12.1.2 An example

12.2 Preliminary concepts and results
12.2.1 The discrete min-max formulation
12.2.2 Convexification

12.3 The algorithm
12.4 Global convergence
12.5 The attainment of unit stepsizes
12.6 Superlinear convergence rates of the algorithm



NOTATION
Sections within a chapter are referred by their consecutive numbers, sections in other chapters are preceded by
the chapter number. For example, in chapter 1, the third section is referred to as section 3 whereas within
chapter 2, the same section would be referred to as section 1.3. The numbering of equations, theorems etc also
follow the same rule. Within a chapter, an equation is referred to by the section number in which it occurs,
followed by the the equation or theorem number in the section. Outside the chapter, this is preceded by the
chapter number. Although sometimes subsections are used to direct the discussion, these are not used in the
referencing system.

t = 1, 2, ..., : Index of discrete-time periods, starting at period 1 with finalŒ

time period .Œ

u : Vector of controls, or decision variables at t time period.t Ë ¶u th

y : Vector of output, or endogenous values, determined by thet Ë ¶y

system, at t time period.th

B ¶t : Vector of uncertainties, or random variables, at t time period.Ë B th

u(.): Expected value of (.).
var (.): Variance of (.).
U [u , ..., u , ..., u ] : Vector of controls of all time periods.Ò ËT T T T

1 t Œ

Œ¶u 

Y [y , ..., y , ..., y ] : Vector of endogenous variables of all time periods.Ò ËT T T T
1 t Œ

Œ¶y 

U , Y : Desired, or bliss values of U, Y.d d

B B B B ¶[ , ..., , ..., ] : Vector of random variables of all time periods.Ò ËT T T T
1 t Œ

ŒB 

¶n: dimensional real vector space.n

x : Vector of optimization variables. Sometimes we denote x [Ë º¶n

Y U ] .T T T�
x : Desired, or bliss, value of x.d

x : Preferred value of x (chapters 3-5).p

x : Current optimal value of x (chapters 3-5).c

x : New optimal value of x (chapters 3-5).n

x: Unconstrained Newton step at x (chapter 6).-
k

x : Projection of x (chapter 6).-p
k

d : Direction of search at x .k k

Tk k: Stepsize along direction of search d .
c : Penalty parameter value at x .k k

Ek: Barrier parameter at iteration k.
L: Binary input length of quadratic programming problem.
¶n m  : Set of real matrices of dimensions n m. 

¶
m m
� 0 : Nonnegative orthant.Ò Ë ¾� �� E ¶ E

1 Ë : [1, 1, ..., 1]¶n T

» ¼ Ëx, y : Inner product x y for x, yT ¶n.

©
m m
+ 0 ; , 1Ò Ë ¾ » ¼ º� �� > ¶ > >1

f(x): Scalar objective function of x .Ë ¶n

f ( ), or : Function f has continuous first partial derivatives with respectË Ë§ ¶ §1 n 1

to x .Ë ¶n

f : Function f has continuous second partial derivatives withË §2

respect to x.
„ „xf(x), or f(x): Gradient of f with respect to x. This is a column vector with ( )j th

element :}

}

f(x)
x j



„ Ò

�

�

f(x)

� �� �� �� �� �� �� �
� 	

}

}

}

}

}

}

f(x)
x

f(x)
x

f(x)
x

1

j

n

f and f : f(x ) and f(x )k k k k„ „
q(x), or q (x): quadratic objective function or quadratic approximation to thek

objective function at x .k

‘(U): computational mapping between Y and U arising from model of
the system g(Y, U) = 0 and the model solution algorithm
(chapters 1, 11).

v v ‘(x), or (U): f( (U), U), i.e. the objective function f(Y, U) reduced using the
mapping Y = (U).‘

‰ f(x): Hessian, or second derivative matrix, of f with respect to x. ( )Ò „2 thj, l

element of this matrix is given by :}

} }

2 f (x)
x xj l

„ Ò

� � � �
2 f (x) ... ...

... ...� �� �� �� �� �� �� �
� 	

} } }

} } } } }

} }

} } }
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2

2 2

f(x) f (x) f (x)
(x ) x x x x

f(x) f (x)
x x (x )

1 j 1 n 1

1 j j @

... ...

}

} }

} } }

} } } }

2

2 2 2

2

f (x)
x x

f(x) f (x) f (x)
x x x x (x )

n j

1 n j n n

� � �

‰ ‰u y, : Weighting matrices associated with U U , Y YŸ Ÿd d

g(x) : Vector valued function of equality constraints i.e. xË Ë¶ ¶e næ ��
g(x) = 0 .�ç

g : g(x )k k

„ „ Ò „ � „ � � „ Ëg : g(x ) g (x ) g (x ) ... g (x )k k k k k· ¸1 2 e n e¶  

h(x) : Vector valued function of inequality constraints i.e. xË Ë¶ ¶i næ ��
h(x) 0 .½ �ç

h : h(x )k k

„ „ Ò „ � „ � � „ Ëh : h(x ) h (x ) h (x ) ... h (x )k k k k k
1· ¸2 i n¶  i

� (x ) i h (x ) = 0 : Set of active inequality constraints at x .k k k
iÒ � ��

Š : Set of feasible points, usually given by

Š ¶= x g x) 0 ; h (x) 0 .� �� Ë î º ½n

In chapter 6, where we constrain to be convex, we have:Š

� ��Š ¶= x h (x) 0 .Ë ½n

In chapter 3, we take this set to be defined by linear equalities
only:

Š ¶ wx x g .º Ë º� �� n T

e: Set of policies acceptable to the decision maker (chapters 3-5)
L(x, , ): Lagrangian function for the constrained optimization problem.J K



L (x, , , c, ): Augmented Lagrangian function for the constraineda J K >

optimization problem.
> ¶ : Vector of offsets for inequality constraints, used in chapters 7Ë i

and 8.
J ¶ : Multiplier vector for the equality constraints.Ë e

K ¶ : Multiplier vector for the inequality constraints.Ë i

trace (A): a ; Ab
i =1

ii

n
n nË ¶  

diag (x): diag [x , x , ..., x ] ; x

x 0 ... 0
0 x ... 0

0 0 ... x

1 2

1

2
n n

n

Ò Ë
� � � �

� �� �� �
� 	

¶

ú û ¾x : smallest integer such that x.H H

�: End of a proof, an example, or a particular train of thought.
decision makerpolicy maker:


