Algorithms for Optimal Decisions Tutorial 1 Questions

Exercise 1 Show that the intersection S of any numbers of convex sets S_{i} is a convex set.

Exercise 2 Show that if $f(x)$ and $g(x)$ are convex functions on a convex set S, then their sum

$$
\begin{equation*}
h(x)=f(x)+g(x) \tag{1}
\end{equation*}
$$

is also a convex function on S.

Exercise 3 Show that if $f(x)$ is a convex function, then the set

$$
\begin{equation*}
L=\left\{x \in R^{n} \quad \mid \quad f(x) \leq b\right\} \tag{2}
\end{equation*}
$$

is a convex set.

Exercise 4 Consider the non-linear problem:

$$
\begin{align*}
\min _{x} \quad f(x) & =x_{1}^{2}+x_{2}^{2}-4 x_{1}+4 \\
\text { s.t. } & g_{1}(x)
\end{align*}=x_{1}-x_{2}+2 \geq 0.10 . x_{1}^{2}+x_{2}-1 \geq 0 .
$$

1. Show that the constraints define a convex set;
2. Show that the objective function $f(x)$ is convex.
