Algorithms for Optimal Decisions Tutorial 1 Answers

Exercise 1 Show that the intersection S of any numbers of convex sets S_{i} is a convex set.

Solution : Take any two elements x_{1}, x_{2} from the intersection set $S=\cap_{i} S_{i}$.

- In order to prove that the intersection S is convex we need to prove that

$$
\begin{equation*}
\alpha x_{1}+(1-\alpha) x_{2} \in S, \quad \forall \alpha \in[0,1] . \tag{1}
\end{equation*}
$$

- Since $x_{1}, x_{2} \in S$ it follows that $x_{1}, x_{2} \in S_{i}, \quad \forall i$.
- Because each S_{i} is a convex set then, for all i :

$$
\begin{equation*}
\alpha x_{1}+(1-\alpha) x_{2} \in S_{i}, \quad \forall \alpha \in[0,1] . \tag{2}
\end{equation*}
$$

- Hence the point $\alpha x_{1}+(1-\alpha) x_{2}$ belongs to all the sets S_{i} for $\forall \alpha \in[0,1]$. Consequently it belongs to the intersection $S=\cap_{i} S_{i}$ of all these sets.
- Therefore we proved that for any two elements x_{1}, x_{2} in the intersection $S=\cap_{i} S_{i}$ and for any $\alpha \in[0,1]$ the following holds:

$$
\begin{equation*}
\alpha x_{1}+(1-\alpha) x_{2} \in S, \quad \forall \alpha \in[0,1] . \tag{3}
\end{equation*}
$$

According to the definition of a convex set, the set $S=\cap_{i} S_{i}$ is also a convex set.

Exercise 2 Show that if $f(x)$ and $g(x)$ are convex functions on a convex set S, then their sum

$$
\begin{equation*}
h(x)=f(x)+g(x) \tag{4}
\end{equation*}
$$

is also a convex function on S.

Solution : Take any two elements x_{1}, x_{2} from the set S. To prove that the sum $f(x)+g(x)$ is a convex function we need to show that:

$$
\begin{align*}
& f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)+g\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \\
\leq & \alpha\left(f\left(x_{1}\right)+g\left(x_{1}\right)\right)+(1-\alpha)\left(f\left(x_{2}\right)+g\left(x_{2}\right)\right) . \tag{5}
\end{align*}
$$

- Since f and g are convex functions we have that for any two points $x_{1}, x_{2} \in S$, and $\alpha \in[0,1]$ the following holds:

$$
\begin{align*}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) & \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \tag{6}\\
g\left(\alpha x_{1}+(1-\alpha) x_{2}\right) & \leq \alpha g\left(x_{1}\right)+(1-\alpha) g\left(x_{2}\right) \tag{7}
\end{align*}
$$

- Adding (6) and (7) we have

$$
\begin{aligned}
& f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)+g\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \\
\leq & \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)+\alpha g\left(x_{1}\right)+(1-\alpha) g\left(x_{2}\right)= \\
= & \alpha\left(f\left(x_{1}\right)+g\left(x_{1}\right)\right)+(1-\alpha)\left(f\left(x_{2}\right)+g\left(x_{2}\right)\right),
\end{aligned}
$$

which shows that (5) holds and consequently the sum $f(x)+g(x)$ is a convex function.

Exercise 3 Show that if $f(x)$ is a convex function, then the set

$$
\begin{equation*}
L=\left\{x \in R^{n} \quad \mid \quad f(x) \leq b\right\} \tag{8}
\end{equation*}
$$

is a convex set.

Solution: We need to prove that for every $x_{1}, x_{2} \in L$ the point $\alpha x_{1}+(1-$ $\alpha) x_{2}$ is also in L.

- For any two elements $x_{1}, x_{2} \in L$ we have:

$$
\begin{aligned}
f\left(x_{1}\right) & \leq b, \quad f\left(x_{2}\right) \leq b \\
\alpha f\left(x_{1}\right) & \leq \alpha b, \quad(1-\alpha) f\left(x_{2}\right) \leq(1-\alpha) b
\end{aligned}
$$

- Adding the above two inequalities we have:

$$
\begin{equation*}
\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \leq \alpha b+(1-\alpha) b=b . \tag{9}
\end{equation*}
$$

- Since the function $f(x)$ is convex we also have:

$$
\begin{equation*}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \tag{10}
\end{equation*}
$$

- From (9) and (10) it follows that

$$
\begin{equation*}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \leq b, \tag{11}
\end{equation*}
$$

which shows that the point $\alpha x_{1}+(1-\alpha) x_{2} \in L$ and consequently the set L is convex.

Exercise 4 Consider the non-linear problem:

$$
\begin{align*}
& \min _{x} f(x)=x_{1}^{2}+x_{2}^{2}-4 x_{1}+4 \\
& \text { s.t. } g_{1}(x)=x_{1}-x_{2}+2 \geq 0 \\
& g_{2}(x)=-x_{1}^{2}+x_{2}-1 \geq 0 \tag{12}\\
& g_{3}(x)=x_{1} \geq 0 \\
& g_{4}(x)=x_{2} \geq 0 \text {. }
\end{align*}
$$

1. Show that the constraints define a convex set;
2. Show that the objective function $f(x)$ is convex.

Solution :

(a) The feasible region (i.e. the set defined by the constraints of the problem) is convex because:
(i) constraints $g_{1}(x), g_{3}(x)$ and $g_{4}(x)$ are linear and hence concave. (Remember that a linear function can be both concave and convex.)
(ii) constraint $g_{2}(x)$ is non-linear. To check whether it is concave or not we need to find its Hessian matrix:

$$
H_{2}=\left[\begin{array}{cc}
\frac{\partial^{2} g_{2}}{\partial x_{1}^{2}} & \frac{\partial^{2} g_{2}}{\partial x_{2} \partial x_{2}} \tag{13}\\
\frac{\partial^{2} g_{2}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} g_{2}^{2}}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right]
$$

and show that it is negative semi-definite, i.e.

$$
\begin{equation*}
\forall v \in R^{2}, \quad v^{t} H_{2} v \leq 0 \tag{14}
\end{equation*}
$$

The matrix H_{2} is negative semi-definite because for every vector $v^{t}=\left(v_{1}, v_{2}\right) \in R^{2}$ we have:

$$
v^{t} H_{2} v=\left(v_{1}, v_{2}\right)\left[\begin{array}{cc}
-2 & 0 \tag{15}\\
0 & 0
\end{array}\right]\binom{v_{1}}{v_{2}}=-2 v_{1}^{2} \leq 0
$$

Therefore all the functions $g_{i}, i=1,2,3,4$ which define the feasible region are concave functions. We have concave functions, and from the previous example, sets:

$$
\begin{equation*}
L_{i}=\left\{x \in R^{n} \quad \mid g_{i}(x) \geq 0\right\}, \quad i=1,2,3,4 \tag{16}
\end{equation*}
$$

are convex (show it!). Feasible region $\mathcal{F}=\cap_{i} L_{i}$ is an intersection of convex sets, therefore also convex.
(b) To show that the objective function $f(x)$ is convex we need to show that its Hessian matrix

$$
H=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \tag{17}\\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

is positive semi-definite.
Matrix H is positive semi-definite because for any $v^{t}=\left(v_{1}, v_{2}\right) \in R^{2}$ we have:

$$
v^{t} H v=\left(v_{1}, v_{2}\right)\left[\begin{array}{ll}
2 & 0 \tag{18}\\
0 & 2
\end{array}\right]\binom{v_{1}}{v_{2}}=2 v_{1}^{2}+2 v_{2}^{2} \geq 0
$$

