Algorithms for Optimal Decisions Tutorial 2 Answers

Exercise 1 Labor costs $2 \$ /$ hour and capital costs $1 \$ /$ unit. If l hours of labor and k units of capital are available then $l^{2 / 3} \cdot k^{1 / 3}$ machines can be produced. If the budget for purchasing capital and labor is 10\$, what is the maximum number of machines that can be produced?

Solution : The problem can be formulated as the following equality constrained non-linear problem:

$$
\begin{array}{rl}
\max _{l, k} & f(l, k)
\end{array}=l^{\frac{2}{3}} \cdot k^{\frac{1}{3}} .
$$

The Lagrangian of the problem (1) is

$$
\begin{align*}
L(k, l, \lambda) & =f(l, k)+\lambda g(l, k) \\
& =l^{\frac{2}{3}} \cdot k^{\frac{1}{3}}+\lambda(2 l+k-10) . \tag{2}
\end{align*}
$$

A stationary point of the Lagrangian function is defined as the solution of the following system of nonlinear equations:

$$
\nabla_{l, k, \lambda} L(k, l, \lambda)=\left[\begin{array}{c}
\frac{\partial L}{\partial L} \tag{3}\\
\frac{L L}{\partial k} \\
\frac{\partial L}{\partial \lambda}
\end{array}\right]=0 .
$$

Evaluating the partial derivatives we get:

$$
\begin{align*}
& \frac{\partial L}{\partial l}=\frac{2}{3} l^{-\frac{1}{3}} k^{\frac{1}{3}}+2 \lambda=\frac{2}{3}\left(\frac{k}{l}\right)^{\frac{1}{3}}+2 \lambda=0 \tag{4}\\
& \frac{\partial L}{\partial k}=\frac{1}{3} l^{\frac{2}{3}} k^{-\frac{2}{3}}+\lambda=\frac{1}{3}\left(\frac{l}{k}\right)^{\frac{2}{3}}+\lambda=0 \tag{5}\\
& \frac{\partial L}{\partial \lambda}=2 l+k-10=0 \tag{6}
\end{align*}
$$

If we define $p=\frac{l}{k}$ then equations (4) and (5) become:

$$
\begin{align*}
\frac{2}{3}\left(\frac{1}{p}\right)^{\frac{1}{3}}+2 \lambda & =0 \tag{7}\\
\frac{1}{3} p^{\frac{2}{3}}+\lambda & =0 \tag{8}
\end{align*}
$$

Solving (7) for λ we have $\lambda=-\frac{1}{3}\left(\frac{1}{p}\right)^{\frac{1}{3}}$ and substituting it into (8) we get

$$
\begin{align*}
& \frac{1}{3} p^{\frac{2}{3}}-\frac{1}{3 p^{\frac{1}{3}}}=0 \Rightarrow \frac{p^{\frac{2}{3}+\frac{1}{3}}-1}{3 p^{\frac{1}{3}}}=0 \Rightarrow \\
\Rightarrow & p-1=0 \Rightarrow p=1 . \tag{9}
\end{align*}
$$

Recall that $p=\frac{l}{k}$. Hence we have $\frac{l}{k}=1 \Rightarrow l=k$ or in other words the number of labor hours and the number of capital units needed to maximize the number of machines produced must be equal.
l and k also must satisfy the constraint

$$
\begin{equation*}
2 l+k-10=0 . \tag{10}
\end{equation*}
$$

As $k=l$ the above becomes $3 l=10 \Rightarrow l=k=\frac{10}{3}$.
Note: Check whether the Hessian matrix of L is negative definite.

Exercise 2 Find the optimum solution of the following constrained problem:

$$
\begin{align*}
\max _{x} f(x)= & x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=3 . \tag{11}
\end{align*}
$$

Solution : The Lagrangian function of problem (11) is:

$$
\begin{equation*}
L(x, \lambda)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}+\lambda\left(x_{1}+x_{2}+x_{3}-3\right) \tag{12}
\end{equation*}
$$

A stationary point of the Lagrangian L satisfies the following system of equations:

$$
\begin{align*}
\frac{\partial L}{\partial x_{1}} & =x_{2}+x_{3}+\lambda=0 \\
\frac{\partial L}{\partial x_{2}} & =x_{1}+x_{3}+\lambda=0 \\
\frac{\partial L}{\partial x_{3}} & =x_{1}+x_{2}+\lambda=0 \tag{13}\\
\frac{\partial L}{\partial \lambda} & =x_{1}+x_{2}+x_{3}-3=0
\end{align*}
$$

It is easy to solve the above system of equations. It's solution is

$$
\begin{equation*}
x^{*}=\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)=(1,1,1), \quad \lambda=-2 . \tag{14}
\end{equation*}
$$

Note: Check whether the Hessian matrix of L is positive definite.

Exercise 3 Given a fixed area of cardboard, try to find the dimensions of a cardboard box with the largest possible volume.

Solution: Denoting the dimensions of the box by x_{1}, x_{2}, x_{3} the problem can be expressed as the following equality constrained problem:

$$
\begin{align*}
\max _{x} \quad \operatorname{vol}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} x_{3} \\
\text { s.t. } g\left(x_{1}, x_{2}, x_{3}\right) & =2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)-c=0, \tag{15}
\end{align*}
$$

where $c>0$ is the given area of the cardboard.
The Lagrangian of the problem is:

$$
\begin{equation*}
L\left(x_{1}, x_{2}, x_{3}, \lambda\right)=x_{1} x_{2} x_{3}+\lambda\left(2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)-c\right) . \tag{16}
\end{equation*}
$$

A stationary point of L satisfies the following system:

$$
\begin{align*}
& \frac{\partial L}{\partial x_{1}}=x_{2} x_{3}+2 \lambda\left(x_{2}+x_{3}\right)=0 \tag{17}\\
& \frac{\partial L}{\partial x_{2}}=x_{1} x_{3}+2 \lambda\left(x_{1}+x_{3}\right)=0 \tag{18}\\
& \frac{\partial L}{\partial x_{3}}=x_{1} x_{2}+2 \lambda\left(x_{1}+x_{2}\right)=0 \tag{19}\\
& \frac{\partial L}{\partial \lambda}=2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)-c=0 . \tag{20}
\end{align*}
$$

Adding equations (17),(18) and (19) we have

$$
\begin{equation*}
\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)+4 \lambda\left(x_{1}+x_{2}+x_{3}\right)=0 . \tag{21}
\end{equation*}
$$

Using equation (20), from equation (21) we have:

$$
\begin{equation*}
\frac{c}{2}+4 \lambda\left(x_{1}+x_{2}+x_{3}\right)=0 . \tag{22}
\end{equation*}
$$

¿From (22) it is clear that $\lambda \neq 0$, since $c>0$. We can also show that x_{1}, x_{2}, x_{3} are always $\neq 0$. This follows because $x_{1}=0$ implies $x_{3}=0$ from equation (18) and $x_{2}=0$ from equation (19).

Similarly it is easy to see that if either of the dimensions x_{1}, x_{2}, x_{3} is zero, all the others must be zero which is impossible.

To solve the equations (17)-(20) we multiply (17) by x_{1} and (18) by x_{2} and subtract the two to obtain

$$
\begin{equation*}
\lambda\left(x_{1}-x_{2}\right) x_{3}=0 . \tag{23}
\end{equation*}
$$

Apply similar operations on (18) and (19) to obtain

$$
\begin{equation*}
\lambda\left(x_{2}-x_{3}\right) x_{1}=0 . \tag{24}
\end{equation*}
$$

Since no variable can be zero, it follows that $x_{1}=x_{2}=x_{3}$. Hence the box must be a cube.

To compute the dimension of the cube we note that

$$
\begin{equation*}
2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)=c \Rightarrow 6 x_{1}^{2}=c \Rightarrow x_{1}=\sqrt{\frac{c}{6}} . \tag{25}
\end{equation*}
$$

