Algorithms for Optimal Decisions Tutorial 3 Questions

Exercise 1 Show that the steepest descent direction

$$
\begin{equation*}
-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}} \tag{1}
\end{equation*}
$$

is the solution of the constrained problem:

$$
\begin{array}{cc}
\min _{d} & \nabla f\left(x_{k}\right)^{t} d \\
\text { s.t. } & \|d\|_{2}^{2}=1 \tag{2}
\end{array}
$$

Exercise 2 Consider the following unconstrained problem:

$$
\begin{equation*}
\max _{x} f(x)=2 x_{1} x_{2}+2 x_{2}-x_{1}^{2}-2 x_{2}^{2} \tag{3}
\end{equation*}
$$

Find its solution using the steepest ascent method starting from the point

$$
x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=(0,0)
$$

