Algorithms for Optimal Decisions Tutorial 3 Answers

Exercise 1 Show that the steepest descent direction

$$
\begin{equation*}
-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}} \tag{1}
\end{equation*}
$$

is the solution of the constrained problem:

$$
\begin{array}{cc}
\min _{d} & \nabla f\left(x_{k}\right)^{t} d \\
\text { s.t. } & \|d\|_{2}^{2}=1 . \tag{2}
\end{array}
$$

Solution : We need to show that the solution of the constrained problem

$$
\begin{array}{rl}
\min _{d} & F(d)=\nabla f\left(x_{k}\right)^{t} d \\
\text { s.t. } & G(d)=\|d\|_{2}^{2}-1=0 \tag{3}
\end{array}
$$

is equal to $d^{*}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}}$.
Observe, initially, that in problem (3) the objective function $F(d)$ is a linear function of $d^{t}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ since

$$
\begin{aligned}
F(d) & =\left(\frac{\partial f\left(x_{k}\right)}{\partial x_{1}}, \frac{\partial f\left(x_{k}\right)}{\partial x_{2}}, \ldots, \frac{\partial f\left(x_{k}\right)}{\partial x_{n}}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)= \\
& =\frac{\partial f\left(x_{k}\right)}{\partial x_{1}} d_{1}+\frac{\partial f\left(x_{k}\right)}{\partial x_{2}} d_{2}+\ldots+\frac{\partial f\left(x_{k}\right)}{\partial x_{n}} d_{n}= \\
& =\sum_{i=1}^{n} \frac{\partial f\left(x_{k}\right)}{\partial x_{i}} d_{i} .
\end{aligned}
$$

Also, the constraint of the problem (3) is quadratic:

$$
\begin{aligned}
G(d) & =\|d\|_{2}^{2}-1=d^{t} d-1=\left(d_{1}, d_{2}, \ldots, d_{n}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)-1= \\
& =d_{1}^{2}+d_{2}^{2}+\ldots d_{n}^{2}-1=\sum_{i=1}^{n} d_{i}^{2}-1 .
\end{aligned}
$$

The Lagrangian of problem (3) is given by:

$$
\begin{align*}
L(d, \lambda) & =F(d)+\lambda G(d)= \\
& =\nabla f\left(x_{k}\right)^{t} d+\lambda\left(\|d\|_{2}^{2}-1\right) \tag{4}
\end{align*}
$$

The KKT conditions for optimality of problem (3) are:

$$
\begin{align*}
\nabla_{d} L(d, \lambda) & =\nabla f\left(x_{k}\right)+2 \lambda d=0 \tag{5}\\
\nabla_{\lambda} L(d, \lambda) & =\|d\|_{2}^{2}-1=d^{t} d-1=0 . \tag{6}
\end{align*}
$$

Assuming that $\lambda \neq 0^{1}$ and solving (5) for d we have:

$$
\begin{equation*}
d=-\frac{1}{2 \lambda} \nabla f\left(x_{k}\right) . \tag{7}
\end{equation*}
$$

Substituting (7) into (6) we have:

$$
\begin{align*}
& \left(-\frac{1}{2 \lambda} \nabla f\left(x_{k}\right)\right)^{t}\left(-\frac{1}{2 \lambda} \nabla f\left(x_{k}\right)\right)-1=0 \\
\Leftrightarrow & \frac{1}{4 \lambda^{2}} \nabla f\left(x_{k}\right)^{t} \nabla f\left(x_{k}\right)-1=0 \Leftrightarrow \frac{1}{4 \lambda^{2}}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}=1 . \tag{8}
\end{align*}
$$

Solving (8) for λ we obtain:

$$
\begin{equation*}
\lambda=\frac{1}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2} . \tag{9}
\end{equation*}
$$

Substituting λ (from (9)) into (7) we have:

$$
\begin{equation*}
d=-\frac{1}{2 \frac{1}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}} \nabla f\left(x_{k}\right)=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}} \tag{10}
\end{equation*}
$$

Hence, the pair

[^0]$$
\left(d_{*}, \lambda_{*}\right)=\left(-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}}, \frac{1}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}\right)
$$
is the optimum solution of the problem (3), or in other words the descent direction d^{*} is the optimum solution of (3).

Exercise 2 Consider the following unconstrained problem:

$$
\begin{equation*}
\max _{x} f(x)=2 x_{1} x_{2}+2 x_{2}-x_{1}^{2}-2 x_{2}^{2} . \tag{11}
\end{equation*}
$$

Find its solution using the steepest ascent method starting from the point

$$
x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=(0,0) .
$$

Solution : The steepest ascent method is the same as the steepest descent method, but it uses the opposite direction. That is, the steepest ascent method moves from point x_{k} to the point $x_{k+1}=x_{k}+\tau \nabla f\left(x_{k}\right)$, while the steepest descent method moves from point x_{k} to the point $x_{k+1}=x_{k}-$ $\tau \nabla f\left(x_{k}\right)$, where in both cases τ denotes the size of the step we take along the steepest ascent direction, $d_{s a}=\nabla f\left(x_{k}\right)$, and steepest descent direction $d_{s d}=-\nabla f\left(x_{k}\right)$ respectively. Steepest ascent method is used when we want to find the maximum of a function.

First find the gradient of $f(x)$:

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \tag{12}\\
\frac{\partial f(x)}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-2 x_{1} \\
2 x_{1}+2-4 x_{2}
\end{array}\right] .
$$

START OF ITERATION 1

At the initial point

$$
x^{(0)}=(0,0)^{t} \text { we have } \nabla f\left(x^{(0)}\right)=(0,2)^{t} .
$$

To begin with first iteration we need to find the next point (which can be described as a better approximation than the initial point $x^{(0)}$ of the optimum point x^{*}).

We have

$$
\begin{align*}
x^{(1)} & =x^{(0)}+\tau \nabla f\left(x^{(0)}\right) \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\tau\left[\begin{array}{l}
0 \\
2
\end{array}\right] \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)}
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
2 \tau
\end{array}\right] . \tag{13}
\end{align*}
$$

Substituting $\left(x_{1}^{(1)}, x_{2}^{(1)}\right)=(0,2 \tau)$ into $f(x)$ we obtain:

$$
\begin{equation*}
f(x)=f\left(x_{1}, x_{2}\right)=f(0,2 \tau)=4 \tau-8 \tau^{2} \tag{14}
\end{equation*}
$$

Next we need to find the value of the step size which maximizes (14). It is a univariable function so we can easily find its maximum:

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} f\left(x_{1}^{(1)}, x_{2}^{(1)}\right)=\frac{\partial}{\partial \tau}\left(4 \tau-8 \tau^{2}\right)=0 \Rightarrow \\
\Rightarrow & 4-8 \cdot 2 \cdot \tau=0 \Rightarrow \tau=\frac{1}{4} .
\end{aligned}
$$

Hence the next point $x^{(1)}$ is:

$$
\begin{equation*}
x^{(1)}=x^{(0)}+\frac{1}{4} \nabla f\left(x^{(0)}\right)=\left(0, \frac{1}{2}\right)^{t} . \tag{15}
\end{equation*}
$$

END OF ITERATION 1

Since $\left\|\nabla f\left(x^{(1)}\right)\right\|_{2} \neq 0$ we carry on.

START OF ITERATION 2

At the new point

$$
x^{(1)}=\left(0, \frac{1}{2}\right)^{t} \text { we have } \nabla f\left(x^{(1)}\right)=(1,0)^{t} .
$$

To begin with the next iteration we need to find the next point $x^{(2)}$. We have

$$
\begin{align*}
x^{(2)} & =x^{(1)}+\tau \nabla f\left(x^{(1)}\right) \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(2)} \\
x_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right]+\tau\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(2)} \\
x_{2}^{(2)}
\end{array}\right] } & =\left[\begin{array}{l}
\tau \\
\frac{1}{2}
\end{array}\right] . \tag{16}
\end{align*}
$$

Substituting $\left(x_{1}^{(2)}, x_{2}^{(2)}\right)=\left(\tau, \frac{1}{2}\right)^{t}$ into $f(x)$ we obtain:

$$
\begin{equation*}
f\left(x^{(2)}\right)=f\left(x_{1}^{(2)}, x_{2}^{(2)}\right)=f\left(\tau, \frac{1}{2}\right)=\tau-\tau^{2}+\frac{1}{2} . \tag{17}
\end{equation*}
$$

Next we need to find the value of the step size which maximizes (17). It is a univariable function so we can easily find its maximum:

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} f\left(x_{1}^{(2)}, x_{2}^{(2)}\right)=\frac{\partial}{\partial \tau}\left(\tau-\tau^{2}+\frac{1}{2}\right)=0 \Rightarrow \\
\Rightarrow & 1-2 \cdot \tau=0 \Rightarrow \tau=\frac{1}{2} .
\end{aligned}
$$

Hence the next point $x^{(2)}$ is:

$$
\begin{equation*}
x^{(2)}=x^{(1)}+\frac{1}{2} \nabla f\left(x^{(1)}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)^{t} . \tag{18}
\end{equation*}
$$

END OF ITERATION 2

Since $\left\|\nabla f\left(x^{(2)}\right)\right\|_{2} \neq 0$ we carry on.

START OF ITERATION 3

At the new point

$$
x^{(2)}=\left(\frac{1}{2}, \frac{1}{2}\right)^{t} \text { we have } \nabla f\left(x^{(2)}\right)=(0,1)^{t} .
$$

To begin with the next iteration we need to find the next point $x^{(3)}$. We have

$$
\begin{align*}
x^{(3)} & =x^{(2)}+\tau \nabla f\left(x^{(2)}\right) \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(3)} \\
x_{2}^{(3)}
\end{array}\right] } & =\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]+\tau\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow \\
{\left[\begin{array}{l}
x_{1}^{(3)} \\
x_{2}^{(3)}
\end{array}\right] } & =\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}+\tau
\end{array}\right] . \tag{19}
\end{align*}
$$

Substituting $\left(x_{1}^{(3)}, x_{2}^{(3)}\right)=\left(\frac{1}{2}, \frac{1}{2}+\tau\right)^{t}$ into $f(x)$ we obtain:

$$
\begin{equation*}
f\left(x^{(3)}\right)=f\left(x_{1}^{(3)}, x_{2}^{(3)}\right)=f\left(\frac{1}{2}, \frac{1}{2}+\tau\right)=\tau-2 \cdot \tau^{2}+\frac{3}{4} . \tag{20}
\end{equation*}
$$

Next we need to find the value of the step size which maximizes (20). It is a univariable function so we can easily find its maximum:

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} f\left(x_{1}^{(3)}, x_{2}^{(3)}\right)=\frac{\partial}{\partial \tau}\left(\tau-2 \cdot \tau^{2}+\frac{3}{4}\right)=0 \Rightarrow \\
\Rightarrow & 1-4 \cdot \tau=0 \Rightarrow \tau=\frac{1}{4} .
\end{aligned}
$$

Hence the next point $x^{(3)}$ is:

$$
\begin{equation*}
x^{(3)}=x^{(2)}+\frac{1}{4} \nabla f\left(x^{(1)}\right)=\left(\frac{1}{2}, \frac{3}{4}\right)^{t} . \tag{21}
\end{equation*}
$$

END OF ITERATION 3

Since $\left\|\nabla f\left(x^{(3)}\right)\right\|_{2} \neq 0$ we carry on.
You can try and do the rest of iterations by yourselves, but there are many. You can also write a computer program to perform those iterations.

A big disadvantage of the steepest descent method is that although it makes satisfactory progress during the initial iterations it may become very slow as it approaches the optimum.

However, it always guarantees to find a point where the value of the objective function is greater than the value of objective function at the previous point.

[^0]: ${ }^{1}$ otherwise $\nabla f\left(x_{k}\right)=0$

