
Algorithms for Optimal Decisions

Tutorial 4

Answers

Exercise 1

Solve the following Q.P. using the Frank–Wolfe method:

min
x

f(x) = x2
1 − x1x2 + x2

2 − 3x1

s.t. −x1 ≤ 0

−x2 ≤ 0 (1)

x1 + x2 − 4 ≤ 0.

Starting point : x(0) = (x
(0)
1 , x

(0)
2 ) = (0, 0).

Solution :
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It is easy to see that the feasible region is a triangle with vertices {(0, 0), (4, 0), (0, 4)}.
Since LP solutions are always at vertices of the feasible region, it will be easy
to solve any sub–LP problem by testing at each vertex. The gradient of the
objective function is given by:

∇f(x) =

(

2x1 − x2 − 3
−x1 + 2x2

)

(2)

We start with x(0) = (0, 0):

f(x(0)) = 0, ∇f(x(0)) =

(

−3
0

)

. (3)

We will minimize

min
x

−3x1 + 0x2

s.t. x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0,

to find the furthest in that direction we can go. Clearly, the optimal vertex
is

x
(1)
LP =

(

4
0

)

. (4)

The new point will be

x(1) =

(

0
0

)

+ τ

(

4
0

)

=

(

4τ
0

)

. (5)

f(x(1)) = (4τ)2 − 3(4τ),
d

dτ
f(x(1)) = 32τ − 12 = 0 ⇒ τ =

3

8
. (6)

Replacing τ = 3
8

into (5) we obtain:

x(1) =

(

3
2

0

)

, f(x(1)) = −2.25. (7)

We now start a new iteration:

∇f(x(1)) =

(

0
−3

2

)

. (8)

We will minimize

min
x

0x1 −
3

2
x2

s.t. x1 + x2 ≤ 4

x1 ≥ 0, x2 ≥ 0,
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to find the furthest in that direction we can go. Clearly, the optimal vertex
is

x
(2)
LP =

(

0
4

)

. (9)

The new point will be

x(2) =

(

3
2

0

)

+ τ

(

−3
2

4

)

=

(

3
2
− 3

2
τ

4τ

)

. (10)

f(x(2)) = −
9

4
− 6τ +

97

4
τ 2,

d

dτ
f(x(2)) =

97

2
τ − 6 = 0 ⇒ τ =

12

97
. (11)

Replacing τ = 12
97

into (10) we obtain:

x(2) =

(

1.314
0.496

)

, f(x(2)) = −2.621. (12)

We now start a new iteration...

The new point will be

x(3) =

(

1.314 + 2.686τ
0.496 − 0.496τ

)

, (13)

f(x(3)) = −2.621 − 2.172τ + 8.793τ 2,

d

dτ
f(x(3)) = −2.172 + 17.586τ = 0 ⇒ τ = 0.124. (14)

Next point is:

x(3) =

(

1.647
0.434

)

, f(x(3)) = −2.755. (15)

This is getting cumbersome to continue by hand, so we shall stop here. Even
though x(3) is not far from x(2), ∇f(x(2)) is not close to (0, 0)t and we have
ways to go before approaching convergence.

We can easily find the unconstrained optimum x∗ = (2, 1)t by solving

∇f(x) =

(

0
0

)

. (16)
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Armijo Stepsize Rule

Fix η and γ to fractional values (i.e. η = γ = 1
2
). Test for the sequence

τ = γ0, γ1, γ2... until the improvement f(xk+1)−f(xk) is better than a certain
amount related to the gradient:

f(xk+1) − f(xk) ≤ −ητ(∇f(xk)
t∇f(xk)). (17)

Example :

x(1) =

(

3
2

0

)

; f(x(1)) = −
9

4
; x(2) =

(

3
2

0

)

+ τ

(

−3
2

4

)

(18)

• τ = 1

f(0, 4) − (−
9

4
) −

1

2
(0 +

9

4
)

16 +
9

4
> −

9

8
;

• τ = 1
2

f(0.75, 2)− (−
9

4
) −

1

4
·
9

4

0.8125 +
9

4
> −

9

16
;

• τ = 1
4

f(1.125, 1) − (−
9

4
) −

1

8
·
9

4

−2.234 +
9

4
= 0.0016 > −

9

32
;

• τ = 1
8

f(1.3125, 0.5)− (−
9

4
) −

1

16
·
9

4

−2.621 +
9

4
= −0.371 ≤ −

9

64
= −0.14;
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Exercise 2 Solve the following problem by using SUMT and taking

x(0) = (x
(0)
1 , x

(0)
2 ) = (1, 1) as a starting point

max
x

f(x) = x1x2

s.t. x2
1 + x2 − 3 ≤ 0 (19)

x1 ≥ 0, x2 ≥ 0.

The solution is x∗ = (x∗

1, x
∗

2) = (1, 2).

Solution : The starting point x(0) = (1, 1) is feasible and it is not on the
boundary of the feasible region. We consider the following barrier function:

B(x) =
m
∑

i=1

1

bi − gi(x)
+

n
∑

j=1

1

xj

(20)

where gi(x), i = 1, . . . , m are the constraint functions of the problem. In
problem (19) there is only one (m = 1) constraint and two (n = 2) variables.
The barrier function becomes:

B(x) =
1

3 − x2
1 − x2

+
1

x1
+

1

x2
. (21)

The unconstrained problem which we use to approximate the initial problem
(19) is defined as follows:

max
x

f(x) − ηB(x) = x1x2 − η(
1

3 − x2
1 − x2

+
1

x1

+
1

x2

). (22)

The unconstrained problem (22) is solved for a decreasing sequence of values
of the parameter η. That is in the beginning the parameter η is fixed to a
specific value, say η = a, and problem (22) is solved. Next, the value of η

is fixed to a smaller value, say η = b < a and then again the corresponding
problem (22) is solved. Since problem (22) is unconstrained it is much easier
solved than the initial problem (19).

• Fix the parameter η = 1. Applying the steepest ascent method, start-
ing from the point x(0) = (1, 1) we can find the maximum of the un-
constrained problem (22), that is

max
x

x1x2 − 1 · (
1

3 − x2
1 − x2

+
1

x1

+
1

x2

). (23)

The solution of the above problem is x(1) = (0.90, 1.36).
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• x(1) is an estimation of a local maximum of the initial constrained
maximization problem (19). Also x(1) is a better estimation than the
starting point x(0), as f(x(1)) > f(x(0)).

• Reducing the value of the parameter η by setting η1 = ηθ with θ = 0.01
we have a new value of η1 = 0.01.

• The parameter η1 = 0.01. Applying the steepest ascent method, start-
ing from the point x(1) = (0.90, 1.36) we can find the maximum of the
unconstrained problem (22), that is

max
x

x1x2 − 0.01 · (
1

3 − x2
1 − x2

+
1

x1

+
1

x2

). (24)

The solution of the above problem is x(2) = (0.983, 1.933).

• x(2) is an estimation of a local maximum of the initial constrained
maximization problem (19). Also x(2) is a better estimation than the
previous point x(1), as f(x(2)) > f(x(1)).

• Reducing the value of the parameter η1 by setting η2 = η1θ with θ =
0.01 we have a new value of η2 = 0.0001.

• The parameter η2 = 0.0001. Applying the steepest ascent method,
starting from the point x(2) = (0.983, 1.933) we can find the maximum
of the unconstrained problem (22), that is

max
x

x1x2 − 0.0001 · (
1

3 − x2
1 − x2

+
1

x1
+

1

x2
). (25)

The solution of the above problem is x(3) = (0.998, 1.994).

• x(3) is an estimation of a local maximum of the initial constrained
maximization problem (19). Also x(3) is a better estimation than the
previous point x(2), as f(x(3)) > f(x(2)).

• By continuing this process (i.e. reducing the value of the parameter η

and solving the corresponding unconstrained problem) we generate a
sequence of points x(k), which converge to the local maximum of the
initial constrained problem (19), which is x∗ = (1, 2).

SUMT is an iterative method which tries to find the optimum of constrained
problem by solving a sequence of easier unconstrained problems. It is consid-
ered a very powerful technique and it is widely used for solving real life large
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scale problems. All the points it generates (approximations to the optimal
solution) lie in the interior of the feasible region of the initial constrained
problem. That is why it is often called the Interior Point Method. SUMT

was invented by Fiacco and McCormick in 1968 and since 1984 there has
been great interest in applying Interior Point Methods in linear and more
recently in nonlinear optimization.
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