Algorithms for Optimal Decisions Tutorial 6 Answers

Exercise 1 Solve the following problem by using the active set method and taking $x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right)=(0,0,1)$ as a starting point

$$
\begin{align*}
\min _{x} f(x)= & x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}-1 \geq 0 \tag{1}\\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

Solution : First, we rewrite the problem, so we have constraints which are less or equal to zero:

$$
\begin{align*}
\min _{x} f(x)= & x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2} \\
& 1-x_{1}-x_{2}-x_{3} \leq 0 \tag{2}\\
& -x_{1},-x_{2},-x_{3} \leq 0
\end{align*}
$$

- The starting point $x^{(0)}$ is feasible, since $g_{i}\left(x^{(0)}\right) \leq 0, \quad i=1,2,3,4$.
- Set $k=0$, where k is the iteration counter. The set of active constraints at the point $x^{(0)}$ is $J_{0}=\{1,2,3\}$.
- The direction of movement $d_{0}=x-x^{(0)}=x$ will be found by solving the following equality constrained problem:

$$
\begin{align*}
& \min _{x} f(x)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2} \\
& \text { s.t. } g_{1}(x)=1-x_{1}-x_{2}-x_{3}=0 \tag{3}\\
& g_{2}(x)=-x_{1}=0 \\
& g_{3}(x)=-x_{2}=0
\end{align*}
$$

- It follows from (3) that $d_{0}=0$.
- Since $d_{0}=0$ we need to compute multipliers $\mu^{(1)}=\left(\mu_{1}^{(1)}, \mu_{2}^{(1)}, \mu_{3}^{(1)}\right)$ for problem (3).
- The Lagrangian of (3) is:
$L\left(x, \mu^{(1)}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+\mu_{1}^{(1)}\left(1-x_{1}-x_{2}-x_{3}\right)+\mu_{2}^{(1)}\left(-x_{1}\right)+\mu_{3}^{(1)}\left(-x_{2}\right)$.
- The optimality conditions for (3) are:

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}} & =2 x_{1}-\mu_{1}^{(1)}-\mu_{2}^{(1)}=0 \\
\frac{\partial L}{\partial x_{2}} & =4 x_{2}-\mu_{1}^{(1)}-\mu_{3}^{(1)}=0 \\
\frac{\partial L}{\partial x_{3}} & =6 x_{3}-\mu_{1}^{(1)}=0 \\
\frac{\partial L}{\partial \mu_{1}^{(1)}} & =1-x_{1}-x_{2}-x_{3}=0 \\
\frac{\partial L}{\partial \mu_{2}^{(1)}} & =-x_{1}=0 \\
\frac{\partial L}{\partial \mu_{3}^{(1)}} & =-x_{2}=0
\end{aligned}
$$

Solution to the above system is

$$
\left(x_{1}, x_{2}, x_{3}, \mu_{1}^{(1)}, \mu_{2}^{(1)}, \mu_{3}^{(1)}\right)=(0,0,1,6,-6,-6) .
$$

- Only one of the Lagrange multipliers are negative $\mu_{2}^{(1)}$.
- From step 3 of the algorithm (see your notes) we can drop the constraint $g_{2}(x)=-x_{1} \leq 0$ from the active set J_{0}. Thus the new active set is $J_{1}=\{1,3\}$.
- Now we need to solve the following equality constrained quadratic problem:

$$
\begin{align*}
\min _{x} \quad f(x) & =x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2} \\
\text { s.t. } & g_{1}(x) \tag{5}
\end{align*}=1-x_{1}-x_{2}-x_{3}=00 .
$$

- The Lagrangian of (5) is:

$$
\begin{equation*}
L\left(x, \mu^{(2)}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+\mu_{1}^{(2)}\left(1-x_{1}-x_{2}-x_{3}\right)+\mu_{2}^{(2)}\left(-x_{2}\right) . \tag{6}
\end{equation*}
$$

- The optimality conditions for (5) are:

$$
\begin{align*}
\frac{\partial L}{\partial x_{1}} & =2 x_{1}-\mu_{1}^{(2)}=0 \\
\frac{\partial L}{\partial x_{2}} & =4 x_{2}-\mu_{1}^{(2)}-\mu_{2}^{(2)}=0 \\
\frac{\partial L}{\partial x_{3}} & =6 x_{3}-\mu_{1}^{(2)}=0 \tag{7}\\
\frac{\partial L}{\partial \mu_{1}^{(2)}} & =1-x_{1}-x_{2}-x_{3}=0 \\
\frac{\partial L}{\partial \mu_{2}^{(2)}} & =-x_{2}=0
\end{align*}
$$

Solution to the above system is

$$
\left(x_{1}, x_{2}, x_{3}, \mu_{1}^{(2)}, \mu_{1}^{(2)}\right)=\left(\frac{3}{4}, 0, \frac{1}{4}, \frac{3}{2},-\frac{3}{2}\right) .
$$

- One of the Lagrange multipliers of problem (5) is negative, so constraint $g_{3}(x)$ is dropped.
- The direction d_{1} is then the vector from point $x^{(1)}=\left(\frac{3}{4}, 0, \frac{1}{4}\right)$ to the solution of the following constrained quadratic problem:

$$
\begin{array}{rl}
\min _{x} & f(x)= \\
& x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2} \tag{8}\\
& \text { s.t. } \\
1-x_{1}-x_{2}-x_{3}=0 .
\end{array}
$$

- Optimality conditions of (8):

$$
\begin{align*}
\frac{\partial L}{\partial x_{1}} & =2 x_{1}-\mu_{1}^{(3)}=0 \\
\frac{\partial L}{\partial x_{2}} & =4 x_{2}-\mu_{1}^{(3)}=0 \\
\frac{\partial L}{\partial x_{3}} & =6 x_{3}-\mu_{1}^{(3)}=0 \tag{9}\\
\frac{\partial L}{\partial \mu_{1}^{(2)}} & =1-x_{1}-x_{2}-x_{3}=0
\end{align*}
$$

- The point $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \mu_{1}^{(1)}\right)=\left(\frac{6}{11}, \frac{3}{11}, \frac{2}{11}, \frac{12}{11}\right)$.
- New point is feasible, so we can take that point as a new point. That means that $\tau=1$. Also the Lagrange multiplier is positive, so point $x^{*}=\left(\frac{6}{11}, \frac{3}{11}, \frac{2}{11}\right)$ is the solution to our problem.

Exercise 2 Solve the following problem using the interior point method:

$$
\begin{align*}
& \min _{x} f(x)=x_{1}+x_{2} \\
& \text { s.t. } g_{1}(x)=-x_{1}^{2}+x_{2} \geq 0 \tag{10}\\
& g_{2}(x)=x_{1} \geq 0 .
\end{align*}
$$

Solution: We shall use the logarithmic barrier function to solve the problem (10). Thus problem (10) is approximated by a sequence of unconstrained problems:

$$
\begin{equation*}
\min _{x} f(x)-\eta_{k} \sum_{i=1}^{2} \log \left(g_{i}(x)\right), \tag{11}
\end{equation*}
$$

where the values of the parameter η_{k} decrease and approach zero. We are going to solve a number of problems (11) for a decreasing sequence of values of the barrier parameter η_{k}, such that

$$
\lim _{k \rightarrow \infty} \eta_{k}=0
$$

First, we find the optimality conditions of the unconstrained problem (11) where the value of the barrier parameter is fixed:

$$
\begin{array}{r}
\frac{\partial}{\partial x_{1}}\left(x_{1}+x_{2}-\eta_{k}\left(\log \left(-x_{1}^{2}+x_{2}\right)+\log \left(x_{1}\right)\right)\right)=0 \\
\frac{\partial}{\partial x_{2}}\left(x_{1}+x_{2}-\eta_{k}\left(\log \left(-x_{1}^{2}+x_{2}\right)+\log \left(x_{1}\right)\right)\right)=0 \tag{13}\\
\Rightarrow \begin{array}{l}
1-\eta_{k} \frac{1}{-x_{1}^{2}+x_{2}} \cdot\left(-2 x_{1}\right)-\frac{\eta_{k}}{x_{1}}=0 \\
1-\eta_{k}\left(\frac{1}{-x_{1}^{2}+x_{2}}\right)=0
\end{array} \quad \Rightarrow
\end{array}
$$

Solving (13) we have:

$$
\begin{equation*}
-\frac{\eta_{k}}{-x_{1}^{2}+x_{2}}=-1 \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
& 1-\left(-2 x_{1}\right)-\frac{\eta_{k}}{x_{1}}=0 \Rightarrow 1+2 x_{1}-\frac{\eta_{k}}{x_{1}}=0 \Rightarrow \\
& 2 x_{1}^{2}+x_{1}-\eta_{k}=0 \tag{15}
\end{align*}
$$

The solution of (15) is given by the formula:

$$
\begin{equation*}
x_{1}=\frac{-1 \pm \sqrt{1+8 \eta_{k}}}{4} \tag{16}
\end{equation*}
$$

Since x_{1} must be positive, only the root

$$
\begin{equation*}
x_{1}=\frac{-1+\sqrt{1+8 \eta_{k}}}{4} \tag{17}
\end{equation*}
$$

is of interest. Substituting (17) into (14) yields:

$$
\begin{align*}
& \frac{-\eta_{k}}{-\left(\frac{-1+\sqrt{1+8 \eta_{k}}}{4}\right)^{2}+x_{2}}=-1 \Rightarrow \ldots \Rightarrow \\
\Rightarrow \quad & x_{2}=\frac{\left(-1+\sqrt{1+8 \eta_{k}}\right)^{2}}{16}+\eta_{k} . \tag{18}
\end{align*}
$$

Formulae (17) and (18) give the optimum of the unconstrained problem (10) where the value of the barrier parameter η_{k} is fixed. For example, if $\eta_{k}=1$ then the point

$$
\begin{equation*}
\left(x_{1}^{(1)}, x_{2}^{(1)}\right)=\left(\frac{-1+\sqrt{1+8}}{4}, \frac{(-1+\sqrt{1+8})^{2}}{16}+1\right)=(0.5,1.25) \tag{19}
\end{equation*}
$$

is the optimum solution of the following unconstrained problem:

$$
\begin{equation*}
\min _{x} f(x)-1 \cdot \sum_{i=1}^{2} \log \left(g_{i}(x)\right) \tag{20}
\end{equation*}
$$

Now, if η_{k} is fixed to a smaller value, say $\eta_{k}=\frac{1}{2}$ then the point

$$
\begin{equation*}
\left(x_{1}^{(2)}, x_{2}^{(2)}\right)=\left(\frac{-1+\sqrt{1+8 \frac{1}{2}}}{4}, \frac{\left(-1+\sqrt{1+8 \frac{1}{2}}\right)^{2}}{16}+1\right)=(0.309,0.595) \tag{21}
\end{equation*}
$$

is the optimum solution of the following unconstrained problem:

$$
\begin{equation*}
\min _{x} f(x)-\frac{1}{2} \cdot \sum_{i=1}^{2} \log \left(g_{i}(x)\right) \tag{22}
\end{equation*}
$$

The following table shows the computed value of the points $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ for different values of η_{k}.

\mathbf{k}	η_{k}	$x_{1}^{(k)}$	$x_{2}^{(k)}$
$\mathbf{1}$	$\eta_{1}=1$	0.5	1.25
$\mathbf{2}$	$\eta_{2}=\frac{1}{2}$	0.309	0.595
$\mathbf{3}$	$\eta_{2}=\frac{1}{4}$	0.183	0.283
$\mathbf{4}$	$\eta_{2}=\frac{1}{10}$	0.085	0.107
	\downarrow	\downarrow	\downarrow
	0	0	0

In the limit (i.e. $\lim _{k \rightarrow \infty} \eta_{k}=0$) the minimizing points $\left(x_{1}^{(k)}, x_{2}^{(k)}\right.$) approach the solution $\left(x_{1}^{*}, x_{2}^{*}\right)=(0,0)$ of the original constrained problem (10).

In this problem there is only one unconstrained local minimum for each value of η_{k}. The problem happens to have the unique solution. It turns out that in problems with many local optima there is a sequence of local unconstrained minima converging to each set of constrained local minima. This is illustrated in the next example.

