Game Theory Tutorial 2 Questions

Exercise 1 (Minimax problem) Three linear functions y_{1}, y_{2} and y_{3} are defined as follows:

$$
\begin{aligned}
& y_{1}=2-x_{1} \\
& y_{2}=x_{1}-1 \\
& y_{3}=2 x_{1}-6
\end{aligned}
$$

Find

$$
\begin{equation*}
\min _{x} \max _{i=1,2,3}\left\{y_{i}\right\} . \tag{1}
\end{equation*}
$$

Exercise 2 (Minimax problem again) Find x_{1}, x_{2} satisfying

$$
\begin{align*}
x_{1}+x_{2} & \leq 2, \\
x_{1}, x_{2} & \geq 0, \tag{2}
\end{align*}
$$

and having the maximum of

$$
\begin{array}{cc}
3 x_{1}- & x_{2} \\
-x_{1}+ & x_{2} \tag{3}
\end{array}
$$

as small as possible.

Exercise 3 (Duality Theory 1) Given the primal L.P. problem:

$$
\begin{align*}
\max _{x} & c^{t} x \\
\text { s.t. } & A x \leq b \tag{4}\\
& x \geq 0
\end{align*}
$$

and its dual pair:

$$
\begin{array}{cl}
\min _{y} & b^{t} y \\
\text { s.t. } & A^{t} y \geq c \tag{5}\\
& y \geq 0
\end{array}
$$

show that the dual of (5) is (4).

Exercise 4 (Duality Theory 2) Find the dual problem of the following L.P. problem:

$$
\begin{array}{lll}
\max & x_{0}=3 x_{1}+2 x_{2} & \\
\text { s.t. } & 5 x_{1}+2 x_{2} & \leq 0 \\
4 x_{1}+6 x_{2} & \leq 24 \\
x_{1}+x_{2} & \geq 1 \tag{6}\\
x_{1}+3 x_{2} & =1 \\
x_{1} & \geq 0 .
\end{array}
$$

