Game Theory Tutorial 2 Answers

Exercise 1 (Minimax problem) Three linear functions y_{1}, y_{2} and y_{3} are defined as follows:

$$
\begin{aligned}
& y_{1}=2-x_{1} \\
& y_{2}=x_{1}-1 \\
& y_{3}=2 x_{1}-6
\end{aligned}
$$

Find

$$
\begin{equation*}
\min _{x} \max _{i=1,2,3}\left\{y_{i}\right\} . \tag{1}
\end{equation*}
$$

Solution : A way to solve problem (1) is to introduce an auxiliary variable, say x_{0} and then to solve the equivalent problem:

$$
\begin{aligned}
\min & x_{0} \\
\text { s.t. } & 2-x_{1} \leq x_{0} \\
& x_{1}-1 \leq x_{0} \\
& 2 x_{1}-6 \leq x_{0}
\end{aligned}
$$

Graph of max function.

The solution to this problem, as can be seen from the above figure is

$$
x_{1}^{*}=1.5, \quad x_{0}^{*}=0.5 .
$$

What would the graph of the following function:

$$
\max _{x} \min _{i} y_{i}
$$

look like and what is the solution to that problem?

Exercise 2 (Minimax problem again) Find x_{1}, x_{2} satisfying

$$
\begin{align*}
x_{1}+x_{2} & \leq 2, \\
x_{1}, x_{2} & \geq 0, \tag{2}
\end{align*}
$$

and having the maximum of

$$
\begin{align*}
3 x_{1}- & x_{2} \\
-x_{1}+ & x_{2} \tag{3}
\end{align*}
$$

as small as possible.

Solution : The problem can be transformed into the following LP problem:

$$
\begin{array}{cl}
\min & w \\
\text { s.t. } & 3 x_{1}-x_{2} \leq w \\
& -x_{1}+2 x_{2} \leq w \\
& x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

To use the simplex algorithm we need all variables to be ≥ 0. However, w could be any real value as it is free variable, so we define $w=x_{3}-x_{4}$, where $x_{3}, x_{4} \geq 0$.

So we are left with the following problem to solve:

$$
\begin{array}{cl}
\min & x_{3}-x_{4} \\
\text { s.t. } & 3 x_{1}-x_{2}-x_{3}+x_{4} \leq 0 \\
& -x_{1}+2 x_{2}-x_{3}+x_{4} \leq 0 \\
& x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Now, introduce slack variables x_{5}, x_{6}, x_{7} :

$$
\begin{array}{lllll}
\min & x_{0}=x_{3}-x_{4} & & & \\
\text { s.t. } & 3 x_{1}-x_{2}-x_{3}+x_{4} & +x_{5} & & \\
& -x_{1}+2 x_{2}-x_{3}+x_{4} & +x_{6} & & =0 \tag{4}\\
& x_{1}+x_{2} & & +x_{7} & =2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 . & & &
\end{array}
$$

The solution is (check!!!) $\left(x_{0}, x_{1}, x_{2}\right)=(0,0,0)$.

Exercise 3 (Duality Theory 1) Given the primal L.P. problem:

$$
\begin{align*}
\max _{x} & c^{t} x \\
\text { s.t. } & A x \leq b \tag{5}\\
& x \geq 0
\end{align*}
$$

and its dual pair:

$$
\begin{array}{cl}
\min _{y} & b^{t} y \\
\text { s.t. } & A^{t} y \geq c \tag{6}\\
& y \geq 0,
\end{array}
$$

show that the dual of (6) is (5).

Solution : We start from the original dual problem (6):

$$
\begin{array}{cl}
\min _{y} & b^{t} y \\
\text { s.t. } & A^{t} y \geq c \\
& y \geq 0,
\end{array}
$$

which is equivalent to :

$$
\left.\left.\begin{array}{rr}
\max _{y} & \left(-b^{t}\right) y \tag{7}\\
\text { s.t. } & A^{t} y \geq c \\
& y \geq 0
\end{array}\right\} \rightarrow \begin{array}{rr}
\max _{y} & \left(-b^{t}\right) y \\
\text { s.t. } & -A^{t} y \leq-c \\
& y \geq 0
\end{array}\right\}
$$

Thus problem (6) is equivalent to the problem (7). We will find the dual of (6) applying the rule onto the equivalent problem (7):

$$
\begin{align*}
& \left.\left.\begin{array}{rrr}
\min _{x} & \left(-c^{t}\right) x \\
\text { s.t. } & \left(-A^{t}\right)^{t} x \geq-b \\
& x \geq 0
\end{array}\right\} \rightarrow \begin{array}{rr}
\min _{x} & \left(-c^{t}\right) x \\
& \text { s.t. } \\
& \\
& \\
& x \geq 0
\end{array}\right\} \rightarrow \tag{8}\\
& \left.\left.\rightarrow \begin{array}{rr}
\max _{x} & \left(c^{t}\right) x \\
\text { s.t. } & -A x \geq-b \\
x \geq 0
\end{array}\right\} \rightarrow \begin{array}{rr}
\max _{y} & c^{t} x \\
\text { s.t. } & A x \leq b \\
& \\
& x \geq 0
\end{array}\right\} \rightarrow \tag{9}
\end{align*}
$$

Hence the dual of the dual problem (6) of the initial problem (5) is (9) which is equivalent to (5).

Exercise 4 (Duality Theory 2) Find the dual problem of the following
L.P. problem:

$$
\begin{array}{lll}
\max & x_{0}=3 x_{1}+2 x_{2} & \\
\text { s.t. } & 5 x_{1}+2 x_{2} & \leq 0 \\
4 x_{1}+6 x_{2} & \leq 24 \\
x_{1}+x_{2} & \geq 1 \tag{10}\\
x_{1}+3 x_{2} & =1 \\
x_{1} & \geq 0 .
\end{array}
$$

Solution : We are going to use rules (1),(2) and (3) from your notes to find the dual of (10).

$\min y_{0}$	$x_{1} \geq 0$	x_{2} free	
$y_{1} \geq 0$	5	2	≤ 0
$y_{2} \geq 0$	4	6	≤ 24
$y_{3} ?$	1	1	≥ 1
$y_{4} ?$	1	3	$=1$
	≥ 3	$? 2$	

- Since the $3 r d$ primal constraint is \geq inequality, then $3 r d$ dual variable y_{3} must satisfy $y_{3} \leq 0$;
- Since the 4 th primal constraint is an equality constraint then 4 th dual variable y_{4} must be free - unrestricted in sign;
- Since $2 n d$ primal variable x_{2} is free then $2 n d$ dual constraint will be an equality.

The new table becomes:

$\min y_{0}$	$x_{1} \geq 0$	x_{2} free	
$y_{1} \geq 0$	5	2	≤ 0
$y_{2} \geq 0$	4	6	≤ 24
$y_{3} \leq 0$	1	1	≥ 1
y_{4} free	1	3	$=1$
	≥ 3	$=2$	

Hence, the dual problem of (10) is:

$$
\begin{array}{lrl}
\min & y_{0}=0 y_{1}+24 y_{2}+y_{3}+y_{4} \\
\text { s.t. } & 5 y_{1}+4 y_{2}+y_{3}+y_{4} & \geq 3 \\
2 y_{1}+6 y_{2}+y_{3}+3 y_{4} & =2 \tag{11}\\
y_{1}, y_{2} \geq 0 & y_{3} \leq 0
\end{array}
$$

