Integer Programming
 Tutorial 1
 Questions

Exercise 1 Olympic Airways Wants to load n containers on one of its cargo air planes. Container j weighs a_{j} tons and its value is c_{j} dollars. The maximum capacity of the air plane is b tons. The airline wants to load the air plane in such a way that the value of its cargo is as large as possible. Formulate the problem as an integer programming problem.

Exercise 2 The owner of a big motor company wants to build $k=10$ new factories in different areas. All factories make the same product. The owner has $n=15$ customers. Customer i demands d_{i} units of the product. The operating cost of the factory j is $f_{j} \geq 0$ and the maximum number of units it can make is M_{j}. The cost of delivering 1 unit from factory i to customer j is $c_{i, j}$.

Where should the owner build his new factories in order to minimise the delivery cost? Formulate the above problem as an I.P. programming problem.

Exercise 3 Reformulate as IP problem the following problem:

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & 2 x_{1}-7 x_{2} \\
\text { s.t. } & 0 \leq x_{1} \leq 10 \tag{1}\\
& 0 \leq x_{2} \leq 10,
\end{array}
$$

and at least one of the following holds:

$$
\begin{array}{r}
-2 x_{1}+3 x_{2} \geq 0 \\
5 x_{1}-4 x_{2} \geq 0 .
\end{array}
$$

Exercise 4 Solve the following problem:

$$
\begin{align*}
\min _{x} & c^{t} x \\
\text { s.t. } & A x=b \\
& x \geq 0 \tag{2}\\
& x_{1} \in\left\{r_{1}, r_{2}, \ldots, r_{q}\right\} .
\end{align*}
$$

Exercise 5 Formulate the following model as a mixed integer programming problem:

$$
\begin{align*}
\min _{x} & \sum_{j=1}^{n} \mathcal{C}_{j}\left(x_{j}\right) \\
\text { s.t. } & A x \leq b \\
& x \geq 0 \tag{3}\\
& \mathcal{C}_{j}\left(x_{j}\right)=\left\{\begin{array}{cl}
0 & x_{j}=0 \\
k_{j}+c_{j} x_{j} & x_{j}>0
\end{array}\right.
\end{align*}
$$

where $c_{j}, k_{j}>0$ and k_{j} are called fixed changes.

