Integer Programming Tutorial 1 Answers

Exercise 1 Olympic Airways Wants to load n containers on one of its cargo air planes. Container j weighs a_{j} tons and its value is c_{j} dollars. The maximum capacity of the air plane is b tons. The airline wants to load the air plane in such a way that the value of its cargo is as large as possible. Formulate the problem as an integer programming problem.

Solution : Let us define the following binary variable:

$$
x_{j}=\left\{\begin{array}{cc}
1, & j \in \text { airplane } \tag{1}\\
0, & \text { otherwise }
\end{array} \forall j=1,2, \ldots, n .\right.
$$

The loading problem can then be modelled as the following I.P. problem:

$$
\begin{align*}
\max _{x} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \tag{2}\\
& x \in\{0,1\}^{n} .
\end{align*}
$$

Exercise 2 The owner of a big motor company wants to build $k=10$ new factories in different areas. All factories make the same product. The owner has $n=15$ customers. Customer i demands d_{i} units of the product. The operating cost of the factory j is $f_{j} \geq 0$ and the maximum number of units it can make is M_{j}. The cost of delivering 1 unit from factory i to customer j is $c_{i, j}$.

Where should the owner build his new factories in order to minimise the delivery cost? Formulate the above problem as an I.P. programming problem.

Solution : Let us define the following variables:

- $y_{i, j}$ denotes the quantity of the product that goes from the factory i to customer j.
- Let x_{i} be the binary variable with:

$$
x_{i}=\left\{\begin{array}{cc}
1, & i \text { is used } \tag{3}\\
0, & \text { otherwise }
\end{array} \forall i=1,2, \ldots, k .\right.
$$

Then the above problem can be modelled as the following I.P. problem:

$$
\begin{align*}
\min _{x} & \left\{\sum_{i=1}^{k} \sum_{j=1}^{n} c_{i, j} y_{i, j}+\sum_{i=1}^{k} x_{i} f_{i}\right\} \\
\text { s.t. } & \sum_{j=1}^{n} y_{i, j}=d_{j} \\
& \sum_{j=1}^{n} y_{i, j} \leq M_{i} x_{i} \tag{4}\\
& y_{i, j} \geq 0, \forall i, j \\
& x \in\{0,1\}^{k} .
\end{align*}
$$

Exercise 3 Reformulate as IP problem the following problem:

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & 2 x_{1}-7 x_{2} \\
\text { s.t. } & 0 \leq x_{1} \leq 10 \tag{5}\\
& 0 \leq x_{2} \leq 10,
\end{array}
$$

and at least one of the following holds:

$$
\begin{gathered}
-2 x_{1}+3 x_{2} \geq 0 \\
5 x_{1}-4 x_{2} \geq 0
\end{gathered}
$$

Solution : We note that the following holds:

$$
\max \left\{2 x_{1}-3 x_{2} \mid 0 \leq x_{1}, x_{2} \leq 10\right\}=20
$$

and

$$
\max \left\{-5 x_{1}+4 x_{2} \mid 0 \leq x_{1}, x_{2} \leq 10\right\}=40 .
$$

So the problem can be reformulated as the following IP problem:

$$
\begin{align*}
\min _{x, \delta} & 2 x_{1}-7 x_{2} \\
\text { s.t. } & 2 x_{1}-3 x_{2}-20 \delta_{1} \leq 0 \\
& -5 x_{1}+4 x_{2}-40 \delta_{2} \leq 0 \tag{6}\\
& 0 \leq x_{1}, x_{2} \leq 10 \\
& \delta_{1}+\delta_{2} \leq 1 \\
& \delta_{1}, \delta_{2} \in\{0,1\} .
\end{align*}
$$

Exercise 4 Solve the following problem:

$$
\begin{align*}
\min _{x} & c^{t} x \\
\text { s.t. } & A x=b \\
& x \geq 0 \tag{7}\\
& x_{1} \in\left\{r_{1}, r_{2}, \ldots, r_{q}\right\} .
\end{align*}
$$

Solution : Write x_{1} as:

$$
x_{1}=\delta_{1} r_{1}+\delta_{2} r_{2}+\ldots+\delta_{q} r_{q}=\sum_{j=1}^{q} \delta_{j} r_{j} .
$$

δ_{j} is a binary variable and exactly one $\delta_{j}=1$, so

$$
\sum_{j=1}^{q} \delta_{j}=1
$$

The problem defined as a IP problem is:

$$
\begin{align*}
\min _{x} & c^{t} x \\
\text { s.t. } & A x=b \\
& x \geq 0 \tag{8}\\
& x_{1}=\sum_{j=1}^{q} \delta_{j} r_{j} \\
& \sum_{j=1}^{q} \delta_{j}=1, \delta_{j} \in\{0,1\} .
\end{align*}
$$

Exercise 5 Formulate the following model as a mixed integer programming problem:

$$
\begin{align*}
\min _{x} & \sum_{j=1}^{n} \mathcal{C}_{j}\left(x_{j}\right) \\
\text { s.t. } & A x \leq b \\
& x \geq 0 \tag{9}\\
& \mathcal{C}_{j}\left(x_{j}\right)=\left\{\begin{array}{cc}
0 & x_{j}=0 \\
k_{j}+c_{j} x_{j} & x_{j}>0
\end{array}\right.
\end{align*}
$$

where $c_{j}, k_{j}>0$ and k_{j} are called fixed changes.

Solution : First of all we need to reformulate the objective function. We do so by introducing binary variables $\delta \in\{0,1\}^{n}$, so the objective function becomes:

$$
\sum_{j=1}^{n} \mathcal{C}_{j}\left(x_{j}\right)=\sum_{j=1}^{n}\left(c_{j} x_{j}+\delta_{j} k_{j}\right)
$$

We also need to add a notional upper bound, so we set M as a large number so that the following constraint is satisfied $-x_{j} \leq M \delta_{j}$. The reformulated problem is:

$$
\begin{align*}
\min _{x} & \sum_{j=1}^{n}\left(c_{j} x_{j}+\delta_{j} k_{j}\right) \\
\text { s.t. } & A x \leq b \\
& x \geq 0 \tag{10}\\
& x \leq M \delta \\
& \delta \in\{0,1\}^{n}
\end{align*}
$$

