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Abstract. We study the solution of non-convex, pessimistic bi-level
problems. After providing several motivating examples, we relate the
problem to existing research in optimisation. We analyse key properties
of the optimisation problem, such as closedness of the feasible region
and computational complexity. We then present and investigate a semi-
infinite solution approach that solves ǫ-approximations of the problem.
To the best of our knowledge, this represents the first solution technique
proposed for this problem class. We close with numerical results and a
discussion on fruitful directions for future research.

1 Introduction

This paper is concerned with problems of the following type:

min
x∈X

f(x) (1.1a)

subject to
g(x, y) ≤ 0 ∀ y ∈ arg max

y′∈Y

h(x, y′), (1.1b)

where X ⊆ R
n, Y ⊆ R

m, f : X 7→ R and g, h : X×Y 7→ R. We assume that X and
Y are non-empty and compact, while f , g and h are continuous in their arguments.
In case multiple constraints g1, . . . , gp : X × Y 7→ R should be considered, they
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can be condensed to g(x, y) = max {gi(x, y) : i = 1, . . . , p}. Similarly, the case of
multiple constraints gi with individual second-stage objectives hi can be handled
by a straightforward extension of what follows. We assume that the feasible region
of the subordinate optimisation problem does not depend on x, the variables of the
master problem.

Model (1.1) is understood best in the context of non-cooperative game theory:
two players A and B participate in a dynamic game where A (the leader) acts
first and B (the follower) responds. In the game, information is assumed to be
complete (i.e., the players’ payoff functions fA and fB, as well as the constraint
sets XA and XB, are common knowledge) and perfect (i.e., the follower knows the
leader’s decision). Having observed the leader’s action xA, the follower chooses a
feasible decision xB ∈ XB that maximises his payoff function fB(·) (i.e., his ‘best
response’). Knowing that the follower does so, the leader chooses an admissible
decision xA ∈ XA which maximises his payoff function fA(·), taking into account
that the follower will choose his best response afterwards. The setting just described
is known as ‘Stackelberg leader-follower game’ [1] and can be formalised as follows.

max
xA∈XA

min
xB∈XB

{

fA(xA, xB) : xB ∈ arg max
x′

B
∈XB

fB(xA, x
′
B)

}

. (1.2)

Problem (1.2) is readily identified as a special case of model (1.1): the feasible
region of the first-stage problem becomes x = (xA, τ) ∈ X = XA × R, while the
feasible region of the second-stage problem is described by y = xB ∈ Y = XB.
The objective function is represented by f((xA, τ)) = −τ . The constraint becomes
g((xA, τ), xB) = τ − fA(xA, xB), which has to be less than or equal to zero for all
maxima of h((xA, τ), x

′
B) = fB(xA, x

′
B).

If the follower’s decision problem is convex but its objective function h lacks the
property of strict convexity, the follower can possess several different globally opti-
mal responses. If the follower’s decision problem is non-convex, the set of optimal
follower responses might even be disconnected. In either situation, the follower is
indifferent between several equally beneficial responses. Multiple optimal responses
pose a problem to the leader since he cannot anticipate which of these optima will
be chosen by the follower, and the corresponding optimal leader decisions can differ
significantly. In the optimistic version of the Stackelberg leader-follower game, the
leader anticipates that the follower chooses a best response that is most suitable
for the leader. In essence, this means that the leader can decide which of the best
responses is implemented by the follower. In (1.1) and (1.2), on the other hand, the
leader does not have this possibility. Instead, he prepares for the worst case, that is,
he chooses a decision xA ∈ XA which performs best in view of the ‘worst’ (globally
optimal) follower response. Because of this, (1.1) and (1.2) are called pessimistic
versions of the bi-level problem and Stackelberg game, respectively.

Stackelberg games and, more generally, bi-level problems naturally arise in eco-
nomics, engineering, optimisation under uncertainty and several other application
areas [8, 9, 33]. In the following, we consider two examples that illustrate some of
the difficulties which have to be addressed by solution procedures.

Production Planning. Two companies A and B produce the same product
and need to decide on their production quantities. Company A is the market
leader and has to decide first on a quantity xA ∈ [0, 200]. Company B, on the
other hand, is a follower and decides on a quantity xB ∈ [0, 100] after observing
A’s decision. The market price for the product depends on the aggregated supply
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Figure 1 Production planning without investment option. The left graph
visualises the follower’s optimal response to the leader’s production quantity,
while the right graph shows the leader’s profit (straight line) and market share
(dashed line) as functions of the leader’s production output. x∗

B
(xA) denotes

the set of optimalresponses of B to a production quantity xA of A.

xΣ = xA + xB and is determined by p(xΣ) = 100 − 0.3xΣ, while the (constant)
unit production costs are 50 for both companies. A and B want to maximise
their profits. Additionally, company A wishes to preserve its market dominance by
providing at least 70% of the aggregated supply.

The profit of company A and B amounts to ρi(xA, xB) = (p(xA +xB)− 50)xi,
i ∈ {A,B}. Company A’s decision problem can be written as follows.

max
xA∈[0,200]

min
xB∈x∗

B
(xA)

{

(50 − 0.3(xA + xB))xA

}

subject to
xA

xA + xB

≥ 0.7 ∀xB ∈ x∗B(xA),

where
x∗B(xA) = arg max

xB∈[0,100]

{(50 − 0.3(xA + xB))xB}

denotes B’s set of optimal responses to a given production quantity of A. The
objective is to maximise company A’s worst-case profit. The constraint ensures
that A preserves a market share of at least 70%, no matter which optimal response
is chosen by B. It is easy to rewrite this model into the form of (1.1).

Figure 1 (left) illustrates company B’s optimal decision x∗B as function of com-
pany A’s production quantity. As expected, B’s optimal output is monotonically
decreasing in A’s production quantity. Figure 1 (right) shows A’s profit and market
share as a function of A’s production quantity, anticipating B’s optimal response
from Figure 1 (left). One can see that it would be optimal for A to produce ≈ 83.33
units (with a profit of ≈ 1041.67), which would cause B to produce ≈ 41.66 units
(with a profit of ≈ 520.87). Since A’s market share would be ≈ 66.66% in this case,
however, A instead has to produce the higher quantity of ≈ 89.75 units (with a
lower profit of ≈ 1035.49), which causes B to produce ≈ 38.45 units (resulting in a
profit of ≈ 443.71).

Let us now assume that B has the option to invest in new production facilities
(at a cost of 500) that reduce B’s per-unit production costs to 38. In this case, ρB

changes to

ρB(xA, xB) = max {(p(xA + xB) − 50)xB, (p(xA + xB) − 38)xB − 500} ,
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Figure 2 Production planning with investment option. The left graph vi-
sualises the follower’s optimal response to the leader’s production quantity,
while the right graph shows the leader’s profit (straight line) and market share
(dashed line) as functions of the leader’s production output. The follower in-
vests if the leader produces less than ≈ 103.33 units. As in Figure 1, x∗

B
(xA)

denotes the set of optimal responses of B to a production quantity xA of A.

while the other problem parameters remain the same. Figure 2 (left) illustrates
B’s new response function. B’s optimisation problem is clearly non-convex. Fur-
thermore, B’s response function has a discontinuity at xA ≈ 103.33: if A produces
more than this quantity, the investment is not beneficial for B. If A produces less
than this quantity, on the other hand, B should invest in new facilities. In this
case, however, the investment costs have to be amortised by a considerably higher
production quantity. Note that at xA ≈ 103.33, B might or might not invest since
he is indifferent between both choices. Figure 2 (right) shows how A’s profit and
market share depend on A’s production quantity in the new situation. Note that
due to the discontinuity in B’s response function, both A’s profit and his market
share possess similar discontinuities at xA ≈ 103.33. With and without the market
penetration constraint, A’s optimal production quantity is ‘just above’ this discon-
tinuity. Since A optimises in view of the worst of B’s globally optimal responses,
the point of discontinuity itself is not optimal: at this point, A has to consider
the possibility that B might indeed invest and thus decrease the market price (by
producing a large quantity in order to amortise his investment costs). As a result,
A’s decision problem contains a discontinuous objective function and a non-closed
feasible region (due to the market penetration constraint). A’s optimal production
quantity is ≈ 103.34 units (resulting in a profit of ≈ 981.69 and a market share
of ≈ 76.54%), while B’s optimal response is ≈ 31.67 units (leading to a profit of
360.84).

It is interesting to note thatB’s additional investment option results in a smaller
profit for B, even though B does not exercise this option in the realised solution.
This seems to contradict the principles of decision theory, where the presence of
additional alternatives should not decrease the achievable profit. The reason for this
surprising (but well-known) effect is that A is aware of B’s investment opportunity.
Hence, A knows that the previously optimal production quantity of ≈ 89.75 would
cause B to exercise his investment option and produce a higher amount. This,
in turn, would result in a lower market price, lower profits and a violation of the
market penetration constraint. Thus, A is forced to produce more, which results
in lower profits for both companies but nevertheless constitutes the best achievable
result for A in this new setting.
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Principal-agent problem. The principal-agent problem illustrates the diffi-
culty to design contracts under incomplete and asymmetric information [16]. As-
sume that agent A is supposed to perform a task for principal P . The generated
profit ρ of that task is a function of the effort φ ∈ [0, 1] that A puts into the task.
Since P cannot observe φ, he designs an incentive-based contract, that is, apart
from a fixed salary, he pays A a fraction β of the observable task profit ρ(φ). P
wants to choose β in such a way that his part of the profit is maximised. The
setting can be cast as a Stackelberg game: P , the leader, moves first by deciding
on the contract parameter β. After he has observed β, A (the follower) chooses the
effort φ∗(β) that maximises his utility u(β, φ). Anticipating A’s decision, P wants
to choose a contract parameter β that maximises his part of the profit, that is,
(1 − β)ρ[φ∗(β)].

In the following, assume that A’s utility is determined by u(β, φ) = s(β, φ) −
r(φ), where s(β, φ) = 10 + βρ(φ) denotes his salary and r(φ) = φ+ (5[φ− 1/2]+)2

represents A’s reluctance to work. The profit generated by the task outcome is
determined by ρ(φ) = 5φ2. With this notation, P ’s optimisation problem can be
described as follows.

max
β∈[0,1]

min
φ∈φ∗(β)

{

5(1 − β)φ2
}

,

where

φ∗(β) = arg max
φ∈[0,1]

{

10 + 5βφ2 − φ− (5[φ− 1/2]+)2
}

denotes the set of optimal efforts for a given contract design β. The model max-
imises P ’s worst-case profit, anticipating that A will choose any of his optimal
responses. Again, it is straightforward to rewrite the model into the form of (1.1).

Figure 3 (left) illustrates A’s optimal effort levels for different contract designs
β. One can see that A’s optimal strategy is to put no effort into the task if the
profit share β is less than ≈ 39.2%. At β ≈ 39.2%, A is indifferent between φ = 0
and φ ≈ 0.520. Above this margin, A’s optimal response increases with β. Figure
3 (right) shows P ’s profit as a function of β, anticipating the optimal response of
A from Figure 3 (left). As in the production planning example with investment
opportunity, the leader’s objective function is discontinuous. The optimal contract
design is ‘just above’ this discontinuity at β ≈ 39.2%, causing A to put an effort of
φ ≈ 0.521 into the task. Again, the point of discontinuity itself is not optimal since
P has to consider that A puts no effort into the task.

In the examples, we have encountered two cases where the follower’s optimal
response function is discontinuous. Such discontinuities lead to set-valued response
functions since at the points of discontinuity, the follower is indifferent between
two or more globally optimal responses. Furthermore, we have seen that quite
naturally, the leader’s optimal strategy can consist in ‘pushing’ the follower as
close as possible to a particular side of such a discontinuity. In Stackelberg games
of type (1.2), this results in (leader) optimisation problems whose projections on the
xA-space possess discontinuous objective functions. More generally, in pessimistic
bi-level problems, this results in non-closed feasible regions. Hence, one can expect
(1.1) to be generically very difficult to solve.

The remainder of this text is organised as follows. In the next section, we
relate formulation (1.1) to existing research in optimisation. In particular, we will
highlight its connection with variants of the minimax problem, bi-level optimisation
and mathematical programming with equilibrium constraints. In Section 3, we
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Figure 3 Principal-agent problem. The left and right graph visualise the
agent’s optimal response and the principal’s profit, both as functions of the
contract design chosen by the principal. The agent does not put any effort
into the task if the profit share is below ≈ 39.2%.

analyse properties of problem (1.1), such as closedness of the feasible region and
the computational complexity under various assumptions. In Section 4, we present
a solution procedure based on semi-infinite programming. Numerical results are
provided in Section 5. We conclude in Section 6. Throughout this paper, the
discussion will take place on an ‘intuitive’ level. Formal justification for the claims
made here is provided in the accompanying paper [31].

2 Relation to existing research

In this section, we relate model (1.1) to existing research. In particular, we
consider various minimax formulations, bi-level models and equilibrium constraint
problems. It will become apparent that our problem formulation fills a gap in the
literature on optimisation under uncertainty and dynamic games.

2.1 Minimax problems. Minimax problems [11, 25] are very similar to the
Stackelberg game discussed in Section 1. Like Stackelberg games, minimax prob-
lems can be regarded as dynamic games with two players A (the leader) and B (the
follower). Contrary to Stackelberg games, however, minimax problems constitute
constant-sum games, i.e., both players possess the same objective function, which
is to be minimised by player A and maximised by player B. Apart from game-
theoretic applications similar to those outlined in Section 1, minimax problems
arise naturally in optimisation under uncertainty. In such settings, player B plays
the role of ‘nature’ which reacts to player A’s decision in the most destructive way.
Hence, player A (the decision maker) is interested in a strategy which performs
best in view of the worst possible future contingency.

Based on the involved constraints, one distinguishes between uncoupled and
coupled minimax problems. The uncoupled minimax problem is defined as:

min
x∈X

max
y∈Y

f(x, y). (2.1)

The characteristic feature of uncoupled minimax problems is that the feasible re-
gions X and Y are independent. Note, however, that the optimal strategy of player
B nevertheless depends on the decision of player A since they are coupled by the
objective function. Similar to Stackelberg games, a purely local optimum with
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respect to both x and y is typically not meaningful for practical applications. Al-
though suboptimal solutions with respect to x are acceptable, a global maximum
with respect to y is needed in order to correctly anticipate player B’s response.
As a result, solution procedures for (2.1) typically determine global optima with
respect to y.

Depending on the optimality guarantees provided with respect to x, one dis-
tinguishes between local and global optimisation approaches. Local optimisation
algorithms for (2.1) have been proposed in [19, 22, 25, 26, 28]. A global optimi-
sation procedure is described in [23]. Problem (2.1) can furthermore be regarded
as a special case of semi-infinite programming, which implies that the respective
solution procedures are applicable as well [5, 6, 15]. Due to their favourable con-
vergence properties, however, specialised local optimisation procedures for (2.1) are
preferable to semi-infinite programming techniques.

Contrary to (2.1), the coupled minimax problem contains coupled constraints
which involve the decisions of both players. Coupled constraints can arise in game-
theoretic settings (both players have to obey certain regulations, the leader wants
to retain a certain market share regardless of the follower’s response, etc.) and
in optimisation under uncertainty (a constraint needs to be satisfied under any
possible future contingency). In the following, we distinguish between two different
types of coupled constraints: type A-constraints restrain player A, whereas type
B-constraints restrain (primarily) player B.

A type A-constraint gA : X × Y 7→ R can be included in (2.1) as follows.

min
x∈X

max
y∈Y

f(x, y) (2.2a)

subject to

gA(x, y′) ≤ 0 ∀ y′ ∈ Y. (2.2b)

Hence, player A has to ensure that the coupled constraint gA is satisfied for all
of player B’s possible responses. Note that gA does not couple player A’s decision
to player B’s eventual response. Instead, any possible response of the follower is
considered. Hence, gA can be considered as part of the description of X , player A’s
feasible region, and the term ‘coupled constraint’ is misleading. Type A-constraints
can be regarded as a natural extension of the uncoupled minimax-problem (2.1) and
have various applications in game theory (similar to our discussion in Section 1) and
optimisation under uncertainty (e.g., a certain constraint has to be satisfied under
any possible future contingency). Problem (2.2) is typically solved as a semi-infinite
program [34].

Often, player B does not represent nature (whose most destructive responses
should be anticipated), but rather a rational player whose objective is to maximise
f . In this case, type A-constraints are unnecessarily restrictive. Indeed, in such
settings player A merely has to ensure that all optimal responses of player B satisfy
the coupled constraint. The resulting formulation is a special case of (1.2) and hence
represents an instance of the pessimistic bi-level problem (1.1).

Contrary to type A-constraints, a type B-constraint gB : X × Y 7→ R restricts
the admissible decisions of player B:

min
x∈X

max
y∈Y

f(x, y) (2.3a)

subject to

gB(x, y) ≤ 0. (2.3b)
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More precisely, (2.3) is to be understood as

min
x∈X

max
y∈Y

{f(x, y) : gB(x, y) ≤ 0} .

Hence, player A can choose any strategy x ∈ X , while player B’s response y ∈ Y
additionally has to satisfy the coupled constraint gB(x, y) ≤ 0. Contrary to type
A-constraints, type B-constraints indeed couple the decisions of the players.

Note that (2.3) implicitly assumes the existence of a y ∈ Y that satisfies
gB(x∗, y) ≤ 0 for the x∗ chosen by player A since otherwise, the objective value
would be undefined. If non-emptyness of {y ∈ Y : gB(x, y) ≤ 0} is not vacuously
satisfied for every x ∈ X , player A needs to ensure that player B has a feasible
response that satisfies the coupled constraint:

min
x∈X

{

max
y∈Y

{f(x, y) : gB(x, y) ≤ 0} : ∃ y ∈ Y . gB(x, y) ≤ 0
}

.

This problem type seems less common in practice, however, since it enforces coop-
eration (in view of the satisfaction of the coupled constraint) among players that
otherwise behave as perfect competitors (due to the objective function). Further-
more, this ‘cooperation’ is assumed to take place sequentially since player A decides
before player B responds. A local optimisation procedure for minimax problems
with type B-constraints can be found in [24].

2.2 Bi-level problems. Minimax problems are special instances of bi-level
problems. Structurally, a bi-level problem is an optimisation problem that contains
a constraint which requires a subset of the variables to optimise a subordinate
optimisation problem. The optimistic (cooperative) bi-level problem can be defined
as follows [9].

min
x,y

f(x, y) (2.4a)

subject to

y ∈ arg min
y′∈Y

{

h(x, y′) : q(x, y′) ≤ 0
}

(2.4b)

g(x, y) ≤ 0 (2.4c)

x ∈ X. (2.4d)

Again, the problem can be interpreted in a game-theoretic setting: for a fixed
leader decision x∗ ∈ X , player B (the follower) implements a decision

y∗(x∗) ∈ argmin
y′∈Y

{

h(x∗, y′) : q(x∗, y′) ≤ 0
}

.

Player A (the leader), on the other hand, solves the problem

min
x∈X

{

f(x, y∗(x)) : g(x, y∗(x)) ≤ 0
}

for some optimal follower response y∗(x). Problem (2.4) is optimistic in the sense
that the leader can choose which of the optimal responses y∗(x) is implemented by
the follower. While this might reflect reality in some settings, it is difficult to justify
in a game-theoretic context. One could argue that the leader is allowed to cooperate
with the follower in order to decide which of his optimal responses is implemented.
Note, however, that absence of cooperation is a fundamental assumption of the
bi-level problem. Indeed, if cooperation was allowed, the two-level structure would
be inappropriate and the players would rather agree on a Pareto-optimal solution
obtained by means of a bargaining process.
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Alternatively, one could keep up the assumption of perfect competition but
postulate that binding contracts are feasible. In this case, the leader can pay
an arbitrarily small amount ǫ to the follower if the latter implements an optimal
response that is favourable for the leader. If transfer payments are allowed, however,
the leader would have an incentive to exploit their full potential and rather solve
the following optimisation problem:

min
x,θ(·),y

{

f(x, y) + θ(y)
}

subject to

y ∈ arg min
y′∈Y

{

h(x, y′) − θ(y′) : q(x, y′) ≤ 0
}

g(x, y) ≤ 0

θ(y) ≥ 0 ∀ y ∈ Y

x ∈ X.

Here, θ(y) represents the amount of money that the leader pays to the follower in
case the latter implements decision y ∈ Y .

If there is a unique globally optimal follower response for every leader decision
x ∈ X , the optimistic bi-level problem (2.4) is equivalent to (1.1).1 This is the
case, for example, if Y is convex and h(x, ·) and q(x, ·) are strictly convex and
quasi-convex in their second arguments, respectively, for every x ∈ X . If the
follower’s optimal response is not guaranteed to be unique, the interpretation of
the obtained solution needs to be carefully considered. In any case, the optimistic
bi-level problem provides a lower (optimistic) bound for (1.1).

Another difference between (2.4) and (1.1) deserves attention: in the former
problem, the feasible region of the second-stage problem depends on the solution
chosen in the first-stage problem through the constraint ‘q(x, y′) ≤ 0’. This is not
the case in (1.1) since the feasible region of the second-stage problem is defined
through ‘y ∈ Y ’ only, i.e., it is independent of the first-stage decision x. In the
following, we refer to the former problem type as ‘dependent’ bi-level problems,
while the latter problem class is termed ‘independent’ bi-level problems. In this
paper, we analyse and solve independent pessimistic bi-level problems, see (1.1).

If the second-stage problem is convex, optimistic bi-level problems can be ex-
pressed as mathematical programs with equilibrium constraints. Hence, the solu-
tion approaches described in the next section can be used for the local optimisation
of (2.4). For problems with linear and quadratic constraints, global optimisation
procedures have been suggested in [12, 13]. Global optimisation procedures for
general instances of (2.4) have been proposed in [21, 30].

An alternative to (2.4) is the pessimistic bi-level problem presented in [21]:

min
x∈X

max
y∈Y(x)

f(x, y), (2.5a)

where for x ∈ X ,

Y(x) =
{

y ∈ arg min
y′∈Y

{

h(x, y′) : q(x, y′) ≤ 0
}

: g(x, y) ≤ 0
}

. (2.5b)

1More precisely the independent version of (2.4) is equivalent to (1.1), see below.
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Contrary to (2.4), the leader cannot decide anymore which optimal response is
implemented by the follower. A subtle but important problem arises when inter-
preting ‘g(x, y) ≤ 0’, which implicitly represents a ‘cooperative’ constraint in (2.5).
Clearly, it restricts the set of admissible follower responses. Since the objective value
is undefined for leader decisions x ∈ X for which there is no admissible follower
response, however, the constraint implicitly restricts the leader as well. This entails
two problems. Firstly, we already saw that ‘cooperative constraints’ are difficult
to justify in a two-stage game-theoretic setting. Secondly, (2.5) could be regarded
as inconsistent since its objective function anticipates the (non-cooperative) worst
case, whereas its constraint assumes (some form of) cooperation between the play-
ers.

It seems more reasonable to assume that cautious leaders want to implement
a decision x for which every optimal follower response y vacuously satisfies the
constraint ‘g(x, y) ≤ 0’. This would result in the following formulation:

min
x∈X

{

max
y∈Y′(x)

{

f(x, y)
}

: g(x, y) ≤ 0 ∀ y ∈ Y ′(x)
}

,

where for x ∈ X ,

Y ′(x) = argmin
y′∈Y

{

h(x, y′) : q(x, y′) ≤ 0
}

.

The independent version of this problem is readily identified as a special case of
(1.1). Indeed, assume that there is a function δ : Y 7→ R such that q(x, ·) = δ(·) for
all x ∈ X . Then the problem can be reformulated as follows.

min
(x,τ)∈X×R

τ

subject to

max
{

f(x, y) − τ, g(x, y)
}

≤ 0 ∀ y ∈ argmin
y′∈Y

{

h(x, y′) : δ(y′) ≤ 0
}

.

2.3 Mathematical programs with equilibrium constraints. Mathemat-
ical programming with equilibrium constraints (MPEC) is concerned with problems
of the following type [20].

min
x,y

f(x, y) (2.6a)

subject to

y ∈
{

z ∈ C(x) : F (x, z)T(z′ − z) ≥ 0 ∀ z′ ∈ C(x)
}

(2.6b)

(x, y) ∈ Z. (2.6c)

Here, C is a set-valued function that maps vectors x to closed convex subsets
of admissible vectors y. Constraint (2.6b) is a parametric variational inequality.
Its value becomes apparent when recalling the first-order optimality conditions for
optimisation problems: for a convex problem of type

min
y∈C(x)

θ(x, y),

y∗ ∈ C(x) is an optimal solution if and only if
[

∇yθ(x, y
∗)

]T
(y − y∗) ≥ 0 ∀ y ∈ C(x). (2.7)

For general non-convex problems, this variational inequality represents a necessary
(but not sufficient) optimality condition.
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Employing variational inequality (2.7), MPECs of type (2.6) can be used to
solve the optimistic bi-level problem (2.4) if the follower’s optimisation problem is
convex. In case the follower’s objective function is furthermore strictly convex, the
optimal solution of (2.6) coincides with the solutions obtained from the pessimistic
bi-level formulations (1.1) and (2.5). If the follower’s objective function is convex
(but not strictly convex), MPECs are valuable if the leader can choose which op-
timal response is implemented by the follower. As we discussed in the previous
section, however, this seems difficult to justify in game-theoretic settings. If the
follower’s optimisation problem is non-convex, (2.6) allows the leader to choose any
local optimum of the follower’s optimisation problem. While this can provide use-
ful lower (optimistic) bounds for the optimal value of (1.1) and (2.5), the obtained
solution itself seems to be of little interest for both game-theoretic applications and
optimisation under uncertainty. Indeed, any rational follower has an incentive to
deviate from strategies prescribed by non-global optima of the follower’s decision
problem. Summing up, for the application areas envisioned in this paper, MPECs
are primarily of interest if the follower’s optimisation problem is convex and pos-
sesses a strictly convex objective function. These assumptions are rather restrictive;
indeed, they are not even fulfilled by linear programs in general.

MPECs are generically non-convex and non-smooth optimisation problems.
Without further assumptions, the feasible region of (2.6) is not even guaranteed
to be closed. Hence, MPECs are very difficult to solve in general. In recent years.
a variety of local optimisation procedures have been proposed that efficiently find
feasible (but in general suboptimal) solutions for (2.6), see [20].

3 Problem analysis

In this section, we analyse the theoretical properties of the independent pes-
simistic bi-level problem (1.1):

min
x∈X

f(x)

subject to

g(x, y) ≤ 0 ∀ y ∈ arg max
y′∈Y

h(x, y′),

where X ⊆ R
n, Y ⊆ R

m, f : X 7→ R and g, h : X × Y 7→ R. As stated in Section
1, we assume that X and Y are non-empty and compact, while f , g and h are
continuous in their arguments. We also relate our findings to other variants of the
bi-level problem (see Section 2.2).

In the first part of this section, we analyse the closedness of the feasible region
of (1.1). Afterwards, we study the computational complexity of the problem. We
close with a discussion of an ǫ-approximation of the problem. This approximation
will provide the basis for our solution procedure in the next section.

3.1 Closedness of the feasible region. We denote the point-to-set mapping
that relates a first-stage decision x ∈ X to the set of optimal second-stage decisions
y ∈ Y by

Y(x) = arg max
y∈Y

h(x, y).

Note that the maximum exists since Y is compact and h continuous. For the same
reasons, Y(x) = {y′ ∈ Y : h(x, y′) ≥ h∗(x)} is compact for every x ∈ X . Thus,
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x x

f1(x) f2(x)

β

α

β

α

Figure 4 Semicontinuity of constraints determines closedness of the feasible
region. Function f1 in the left graph is upper semicontinuous, while function
f2 in the right graph is lower semicontinuous. {x : f1(x) ≤ δ} is only closed
for δ < α and δ ≥ β, whereas {x : f1(x) ≥ δ} is closed for all δ. Similarly,
{x : f2(x) ≥ δ} is only closed for δ ≤ α and δ > β, whereas {x : f2(x) ≤ δ} is
closed for all δ.

we can denote the maximum value of g(x, ·) over all optimal second-stage solutions
y ∈ Y(x) by g∗(x):

g∗(x) = max
y∈Y(x)

g(x, y).

With this notation, the independent pessimistic bi-level problem (1.1) equals

min
x∈X

{

f(x) : g∗(x) ≤ 0
}

.

This problem is closed if g∗ is lower semicontinuous, see Figure 4. Closedness
of the feasible region is a crucial property of optimisation problems. Indeed, the
minimum or maximum of a continuous function over a non-closed domain might
not be attained. The following example illustrates that the feasible region of (1.1)
is generically non-closed:

max
x∈[−1,1]

x

subject to

x ≤ y ∀ y ∈ argmin
y′∈[−1,1]

{

xy′
}

.

The model is readily identified as an instance of (1.1). Note that points x > 0
are infeasible since the constraint becomes ‘x ≤ −1’ in that case. Similarly, x = 0
is infeasible since the constraint becomes ‘0 ≤ y ∀ y ∈ [−1, 1]’ in that case. For
points x < 0 the constraint becomes ‘x ≤ 1’ and is as such vacuously satisfied.
As a result, the admissible solutions are x ∈ [0, 1), that is, the feasible region is
not closed. Furthermore, since the objective is to maximise x, the optimum is
undefined. Note that optimal solutions do exist for other objective functions, such
as ‘max −x’.

The non-closedness of the feasible region of (1.1) can be further analysed by con-
sidering Berge’s Maximum theorem. For this we need the notions of hemicontinuity
and closedness of point-to-set mappings. A point-to-set mapping γ : X 7→ P(Y )
maps points x ∈ X to subsets of Y . γ is upper hemicontinuous at x ∈ X if γ(x) ⊆ S
for some open set S ⊆ Y implies that γ(x′) ⊆ S for all x′ in a neighbourhood of
x. Similarly, γ is lower hemicontinuous at x ∈ X if γ(x) ∩ S 6= ∅ for some open set
S ⊆ Y implies that γ(x′)∩S 6= ∅ for all x′ in a neighbourhood of x. γ is continuous
at x ∈ X if it is lower and upper hemicontinuous at x. The concepts of upper and
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γ1(x)

x

γ2(x)

x

γ3(x)

x

Figure 5 Upper and lower hemicontinuity. Point-to-set mapping γ1 is lower,
but not upper hemicontinuous. Point-to-set mapping γ2, on the other hand,
is upper, but not lower hemicontinuous. Point-to-set mapping γ3, finally, is
neither upper nor lower hemicontinuous.

γ1(x)

x

γ2(x)

x

Figure 6 Closed and closed-valued point-to-set mappings. Point-to-set map-
ping γ1 is closed-valued, but not closed. Point-to-set mapping γ2 is neither
closed-valued nor closed.

lower hemicontinuity are illustrated in Figure 5. γ is closed at x ∈ X if xn → x
and yn → y for yn ∈ γ(xn) imply that y ∈ γ(x). Note that closedness of the point-
to-set mapping γ at x ∈ X (as just described) implies closedness of the set γ(x),
but not vice versa. In order to avoid confusion, we will refer to the latter concept
as closed-valued (or, in connection with boundedness, as compact-valued) in the
following. Both concepts are illustrated in Figure 6. We say that γ is lower/upper
hemicontinuous or closed if it is lower/upper hemicontinuous or closed at all x ∈ X .

With this notation, Berge’s Maximum theorem can be stated as follows.

Theorem 3.1 (Berge’s Maximum Theorem [3, 7]) For X ⊆ R
n and Y ⊆ R

m,
let γ : X 7→ P(Y ) be a compact-valued point-to-set mapping. Furthermore, for a
continuous function η : X × Y 7→ R, let

Γ(x) = argmax
y∈γ(x)

η(x, y).

Then Γ is compact-valued for all x ∈ X. Furthermore, if γ is continuous at x ∈ X,
then Γ is closed and upper hemicontinuous at x.

In our setting, X and Y coincide with the respective sets of (1.1), γ(x) = Y for
all x ∈ X , η(x, y) = h(x, y) and Γ(x) = Y(x). Since Y is compact, γ is compact-
valued in our case. Continuity of γ is vacuously satisfied. Hence, Berge’s Maximum
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Y(x)

x

g(x,Y(x))

x

g∗(x)

x

Figure 7 Closedness and upper hemicontinuity of Y do not imply lower semi-
continuity of g∗. For the point-to-set mapping Y in the left graph, the middle

and right graphs visualise x 7→ {g(x, y) : y ∈ Y(x)} and x 7→ g∗(x), respec-
tively. Although Y is closed and upper hemicontinuous, g∗ fails to be lower
semicontinuous.

theorem is applicable and Y is closed and upper hemicontinuous. These properties
do not imply lower semicontinuity of g∗, however. This is illustrated in Figure 7.

Let us contrast this with the independent optimistic version of the bi-level
problem. Here, the optimisation problem is

min
x∈X

{

f(x) : g′(x) ≤ 0
}

with g′(x) = min
y∈Y(x)

g(x, y).

Again, we can employ Berge’s Maximum theorem to show that Y is closed and upper
hemicontinuous. With the new choice of functions, however, this implies that g′

is lower semicontinuous. Hence, the independent optimistic bi-level problem has
a closed feasible region. Note that the same reasoning can be employed to show
the upper semicontinuity of g∗ in the case of the independent pessimistic bi-level
problem.

Let us compare this result with the well-known fact that dependent optimistic
bi-level problems have non-closed feasible regions in general. This can be illustrated
by the following example, which is borrowed from [29]:

min
x∈R,

y∈[0,2]

{

y − x
}

subject to

x ≤ 1

y ∈ arg max
y′∈[0,2]

{

x+ y′ : xy′ ≥ 0
}

.

One can readily verify that the feasible region of this problem is described by the
non-closed set (x, y) ∈ (−∞, 0)× {0} ∪ [0, 1]×{2}. In the terminology of Theorem
3.1, the point-to-set mapping γ is not continuous at zero and Berge’s Maximum
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theorem is as such not applicable.2 Hence, the added generality of the dependent
optimistic bi-level problem over its independent counterpart comes at the price of
generically non-closed feasible regions. Of course the dependent pessimistic bi-level
problem has a generically non-closed feasible region as well since it encompasses its
independent counterpart as a special case.

Summing up, we have seen that the pessimistic bi-level problem is more in-
volved than its optimistic counterpart. The feasible region of both problems can
be expressed as {x ∈ X : g(x) ≤ 0} for some function g : X 7→ R. For indepen-
dent optimistic bi-level problems, we can employ Berge’s Maximum theorem to
show that this g is lower semicontinuous, which in turn implies that the feasible
region is closed. Although Berge’s Maximum theorem is applicable to independent
pessimistic bi-level problems as well, this would only allow us to prove upper semi-
continuity of g. Indeed, a simple example demonstrated that the feasible region
of independent pessimistic bi-level problems is generically non-closed. Dependent
bi-level problems, finally, have generically non-closed feasible regions, no matter
whether the optimistic or pessimistic variant is considered.

It turns out that even in benign cases where the feasible region is closed, bi-
level problems are difficult to solve in general. In the next section, we examine the
computational complexity of several variants of the bi-level problem.

3.2 Computational complexity. In this section, we consider the computa-
tional complexity of optimistic and pessimistic bi-level problems. Clearly, these
problems are difficult to solve in general, i.e., without further assumptions about
the feasible regions and involved functions. In the following, we will look at special
cases and show that even in seemingly benign settings, bi-level problems remain
difficult to solve. We assume some familiarity with the basic notions of complexity
theory, in particular with NP-hardness. For a textbook introduction to complexity
theory, the reader is referred to [14]. Complexity results for dependent optimistic
bi-level problems are compiled in [10, 33]; we will mention some of them further
below.

We will base our discussion on the Knapsack problem: imagine n different
goods with weights wi and utilities ui, i = 1, . . . , n. The goal is to find a utility-
maximising subset of goods whose collective weight does not exceed W :

max
x∈{0,1}n

{

n
∑

i=1

uixi :
n

∑

i=1

wixi ≤W
}

. (3.1)

The Knapsack problem is known to be NP-hard [14]. Intuitively speaking, this
is caused by the binarity requirement, which forces (current) solution procedures
to consider many of the elements of {0, 1}n in the worst case. Since this set is of
size 2n, this results in exponential solution procedures. For the remainder of this
section, we will be interested in the following reformulation:

max
x∈[0,1]n

{

n
∑

i=1

uixi −M

n
∑

i=1

min {xi, 1 − xi} :

n
∑

i=1

wixi ≤W
}

. (3.1’)

Here, the binarity requirement has been dropped in favour of the penalty function
M

∑n
i=1 min {xi, 1 − xi}. Note that this function vanishes at binary solutions, while

other x are penalised with a multiplicity of the constant M . It can be shown that

2More precisely, γ is not lower hemicontinuous in this case. To see this, consider the open
set S = (1, 2): γ(x) ∩ S 6= ∅ for x ≥ 0, but γ(x) ∩ S = ∅ for x < 0.
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the penalty function is exact for finite M , i.e., for a suitably large (but polynomial)
M , the optimal solution of the latter problem is guaranteed to be binary [2, 4].
For such M , the optimal solutions of (3.1) and (3.1’) coincide. Due to the penalty
term, (3.1’) remains a non-convex optimisation problem.

Let us now consider linear bi-level problems:

min
x∈R

n

+

cTx (3.2a)

subject to

Ax+By ≤ b ∀ y ∈ arg max
z∈R

m

+

{

dTx+ fTz : Cx+Dz ≤ g
}

. (3.2b)

Model (3.2) represents a dependent pessimistic bi-level problem. If the ‘∀’ in
the first constraint is replaced by an ‘∃’, we obtain the corresponding dependent
optimistic bi-level problem. Let us first assume that C = 0. In this case, we consider
independent bi-level problems, i.e., the set of admissible second-stage decisions does
not depend on the first-stage variables. Moreover, since the contribution of the
first-stage variables to the second-stage objective is constant, the set of optimal
second-stage decisions does not depend on the first-stage variables either. In itself,
however, this does not imply that (3.2) can be solved efficiently. Indeed, it could
well be that the (vertex) set of optimal second-stage solutions has exponential
cardinality, and the mere enumeration of its elements would be a difficult problem.
It turns out, however, that one can employ duality arguments to show that both
the optimistic and the pessimistic version of the linear independent bi-level problem
can be solved in polynomial time [31].

Let us now assume that C 6= 0. In [10] it has been shown that the linear de-
pendent optimistic bi-level problem can be solved in polynomial time if the number
of second-stage variables is regarded as a constant. The authors show that the
result can be extended to the linear dependent pessimistic bi-level problem. If we
drop the assumption of a constant number of second-stage variables, however, the
linear dependent optimistic bi-level problem becomes strongly NP-hard [18]. In
the following, we show that the linear dependent pessimistic bi-level problem is
NP-hard as well, which is an immediate consequence of [2]. Consider the following
formulation:

max
(x,τ)∈R

n+1

+

{

n
∑

i=1

uixi −Mτ
}

subject to

n
∑

i=1

wixi ≤W

τ ≥
n

∑

i=1

yi ∀ y ∈ argmax
z∈[0,1]n

{

n
∑

i=1

zi : z ≤ x, z ≤ e− x
}

,

where e denotes the vector of all ones. Note that for a given first-stage solution
x, the optimal second-stage solution is y∗ with y∗i = min {xi, 1 − xi}. Thus, this
problem is equivalent to (3.1’). As a result, the linear dependent pessimistic bi-level
problem is indeed NP-hard.

Let us now consider nonlinear versions of the bi-level problem. Clearly, non-
linear dependent bi-level problems are NP-hard since they encompass the linear
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dependent bi-level problems as special cases. In the following, we show that con-
trary its linear counterpart, the nonlinear independent pessimistic bi-level problem
is NP-hard as well. More precisely, we consider

min
x∈X

f(x) (3.3a)

subject to
g(x, y) ≥ 0 ∀ y ∈ arg max

z∈Y

h(x, z) (3.3b)

with f , g linear, X and Y polyhedral and h concave and smooth. Let us take a
look at the following problem:

max
(x,τ)∈R

n+1

+

{

n
∑

i=1

uixi −Mτ
}

subject to
n

∑

i=1

wixi ≤W

τ ≥
n

∑

i=1

y2
i ∀ (y1, y2) ∈ argmax

(z1,z2)∈R
2n

+

{

−
∥

∥z1 − x
∥

∥

2
: z2 ≤ z1, z2 ≤ e− z1

}

,

where ‖·‖2 denotes the Euclidean norm. Clearly, the problem is an instance of (3.3).
For a given first-stage solution x, the optimal second-stage solution is (y1, y2) with
y1

i = xi and y2
i ∈

[

0,min
{

xi, 1 − xi

})

. Since τ has to be greater than or equal

to the sum of y2’s components for every optimal y2, this problem is equivalent to
(3.1’), too. We note that the problem remains NP-hard if we allow the second-
stage problem to be solved only with (polynomially bounded) accuracy ǫ. The
corresponding proof can be found in [31].

Summing up, linear independent bi-level problems are efficiently solvable. The
nonlinear independent pessimistic bi-level problem, however, is NP-hard even in
very elementary settings. Dependent bi-level problems are in general more difficult
than their independent counterparts. Indeed, the only efficiently solvable case we
are aware of are linear dependent bi-level problems under the additional assumption
of a constant number of second-stage variables.

3.3 ǫ-approximations. We have seen in Section 3.1 that the feasible region
of the independent pessimistic bi-level problem (1.1),

min
x∈X

f(x)

subject to
g(x, y) ≤ 0 ∀ y ∈ arg max

y′∈Y

h(x, y′),

is generically non-closed. In this section, we construct an ǫ-approximation of (1.1)
that is closed and, under certain technical assumptions, ‘converges’ (with respect
to the set of optimal solutions) to problem (1.1) as ǫ → 0. This approximation
serves as the basis for the solution procedure which we will discuss in Section 4.

Using the notation from Section 3.1, we can reformulate (1.1) as follows.

min
x∈X

{

f(x) : g(x, y) ≤ 0 ∀ y ∈ Y(x)
}

,

where
Y(x) = {y ∈ Y : h(x, y) ≥ h(x, y′) ∀ y′ ∈ Y } .
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x2

x1

Figure 8 Feasible region of P and P (ǫ) for different values of ǫ. Shown is

the feasible region (with respect to the X-space) induced by g(x, y) ≤ 0 for
y ∈ Y(x) (straight line) and y ∈ Yǫ(x) for different ǫ (dashed lines). In this

example, x, y ∈ R
2, g(x, y) = ‖x‖2

2 + ‖y‖2
2 − 50 and h(x, y) = ‖x − y‖2.

In the remainder of this section, we refer to this problem as P . Let us denote by
θ∗ the tightest bound on the objective value of P that we can obtain:

θ∗ = inf
x∈X

{

f(x) : g(x, y) ≤ 0 ∀ y ∈ Y(x)
}

.

Since P is not guaranteed to be closed, θ∗ might or might not be attainable.
We consider the following approximation P (ǫ) of P , ǫ > 0:

min
x∈X

{

f(x) : g(x, y) ≤ 0 ∀ y ∈ Yǫ(x)
}

, (3.4a)

where

Yǫ(x) =
{

y ∈ Y : h(x, y) > h(x, y′) − ǫ ∀ y′ ∈ Y
}

. (3.4b)

We denote the optimal objective value of this problem by θ(ǫ) if it exists and
set θ(ǫ) = ∞ otherwise. Note that Yǫ(x) is a superset of Y(x), x ∈ X . Hence,
P (ǫ) enforces more ‘g(x, y) ≤ 0’-constraints and as such constitutes a conservative
approximation of P , see Figure 8. This, together with the fact that the objective
functions of both problems coincide, implies that θ(ǫ) ≥ θ∗ for all ǫ > 0. Decreasing
the value of ǫ leads to better approximations of P in the following sense:

∀κ > 0 ∃λ > 0 : ∀x ∈ X, ǫ ∈ (0, λ] , y ∈ Yǫ(x) ∃ y′ ∈ Y(x) : ‖y − y′‖ ≤ κ.
(3.5)

Hence, the distance between every y ∈ Yǫ(x) and its ‘closest’ y′ ∈ Y(x) can be
made arbitrarily small by decreasing ǫ. The nature of Yǫ and the approximation
thereby obtained is further illustrated in Figure 9.

Contrary to P , P (ǫ) has a closed feasible region for every ǫ > 0. For this
property, the strict inequality in the definition of Yǫ turns out to be crucial. To see
this, note that (3.4) can be equivalently expressed as

min
x∈X

{

f(x) : g∗ǫ (x) ≤ 0
}

with g∗ǫ (x) = sup
y∈Yǫ(x)

g(x, y). (3.4′)

Figure 10 (left) shows that Yǫ is ‘open from the sides’ in the following sense: if
y ∈ Yǫ(x), then there is a neighbourhood N(x) of x such that y ∈ Yǫ(x

′) for all
x′ ∈ N(x). This property is a direct consequence of the strict inequality in the
definition of Yǫ. As Figure 10 (middle) illustrates, this property is passed on to
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h(x, y)

y

}ǫ{ǫ

{ {

Yǫ(x)

Figure 9 Convergence of Yǫ(x) to Y(x) for given x. For ǫ small enough (in
this case, for ǫ < ǫ), Yǫ(x) contains only second-stage solutions ‘close’ to global
maxima of h.

Yǫ(x)

x

g(x,Yǫ(x))

x

g∗ǫ (x)

x

Figure 10 Employing Yǫ instead of Y leads to closed, conservative approxi-
mations of P . The graphs illustrate the consequences of using Yǫ instead of Y
(dashed lines) for the example from Figure 7. Function g∗ǫ is lower semicon-
tinuous and bounds g∗ from above.

the mapping x 7→ {g(x, y) : y ∈ Yǫ(x)}. Figure 10 (right), finally, shows that this
property ensures lower semicontinuity of g∗ǫ . Lower semicontinuity of g∗ǫ , however,
guarantees that (3.4′) (and thus, (3.4)) has a closed feasible region.

The difference between θ(ǫ) and θ∗ depends on the value of ǫ. From the relation
between Yǫ and Y, one expects that smaller values of ǫ lead to smaller gaps between
θ(ǫ) and θ∗. It can happen, however, that P (ǫ) is infeasible for every ǫ > 0,
whereas P contains feasible solutions.3 Similarly, optimal solutions of P (ǫ) might
‘substantially deviate’ from those of P for every ǫ > 0. In the following, we discuss
a technical condition under which such problems cannot arise. More precisely, we

3This can happen, for example, if the feasible region of P contains no interior points.
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give a condition under which

lim
ǫ→0

θ(ǫ) = θ∗.

By construction, θ(ǫ) ≥ θ∗ for all ǫ > 0. Moreover, feasible solutions of P have
objective values of θ∗ or larger. Since P is not necessarily closed, however, θ∗

might not be achievable. Hence, we cannot hope for more than convergence of
θ(ǫ) to θ∗ for ǫ → 0. In order to show such a convergence, we introduce another
approximation P ′(δ) of P , δ > 0:

min
x∈X

{

f(x) : g(x, y) ≤ −δ ∀ y ∈ Y(x)
}

.

Let us denote the optimal objective value of P ′(δ) by ψ(δ); in case P ′(δ) is infeasible,
we set ψ(δ) = ∞. For every δ > 0, we can find an ǫ(δ) > 0 such that θ(ǫ(δ)) ≤ ψ(δ).
Indeed, let x ∈ X be feasible for P ′(δ), that is, g(x, y) ≤ −δ for all y ∈ Y(x). We
want to show that x is feasible for some P (ǫ) as well, that is, g(x, y) ≤ 0 for all
y ∈ Yǫ(x). Due to the continuity of g, we can find a φ > 0 such that g(x, y′) ≤ 0 for
all y′ ∈ Y with ‖y − y′‖ ≤ φ. Hence, we need to choose ǫ such that all y′ ∈ Yǫ(x)
have a distance of at most φ to some y ∈ Y(x). This is exactly what property
(3.5) allows us to do. Hence, P ′(δ) is indeed a conservative approximation of some
P (ǫ(δ)), and we have shown that

x is feasible for P ′(δ)  x is feasible for P (ǫ(δ))  x is feasible for P.

Furthermore, the objective functions of all three problems coincide.
It remains to be shown that under a certain condition,

lim
δ→0

ψ(δ) = θ∗.

Tuy [17, 32] calls such problems P ‘stable’. A sufficient condition for the stability
of P is that the function g∗ from Section 3.1,

g∗(x) = max
y∈Y(x)

g(x, y),

has no local minimum of value zero, see [17, 32]. A tighter description can be found
in [31], where it is shown that P is stable as long as not all of its global optima
(if such global optima exist) are attained at local minima of g∗ with value zero. If
P does not possess any global optima (remember that P might have a non-closed
feasible region), ψ(δ) will always converge to θ∗ for δ → 0. The stability condition is
illustrated in Figure 11. Since θ(ǫ(δ)) is ‘sandwiched’ between ψ(δ) and θ∗, stability
of P implies convergence of θ(ǫ) to θ∗ for ǫ→ 0.

Summing up, we have discussed a conservative approximation P (ǫ) of the in-
dependent pessimistic bi-level problem P . Contrary to the latter problem, this
approximation is closed and as such amenable to optimisation techniques. In the
next section, we will present a semi-infinite solution procedure that allows us to
solve P (ǫ) for fixed ǫ. The resulting solution represents a feasible but in general
suboptimal solution to P . Better solutions can be found for smaller values of ǫ, and
if a technical assumption is satisfied, these solutions are guaranteed to converge to
the global optima of P (if existent) for ǫ→ 0.

Throughout this section, our key motivation for the ǫ-approximation (3.4) was
computational tractability. Indeed, contrary to the original problem (1.1), the
approximation (3.4) has a closed feasible region. Apart from computational aspects,
there are at least two further reasons why the ǫ-approximation is a valuable tool
in the setting of Stackelberg games. Firstly, it is very likely that the leader does



Global Optimisation of Pessimistic Bi-Level Problems 21

x x x

Figure 11 Technical condition for the convergence of P (ǫ) to P , ǫ → 0. The
straight and dashed lines represent g∗ and f , respectively. In the first graph,
g∗ does not possess local minima of value zero and hence, convergence can be
guaranteed for any f . In the second graph, the unique global optimum of f

is located at a solution where g∗ attains a local minimum of value zero. As a
result, convergence cannot be ensured in this case. In the third graph, finally,
there are global optima of f where g∗ does not attain a local minimum of value
zero and hence, convergence is guaranteed.

not know the follower’s optimisation problem exactly, that is, he might not be
sure about the precise shape of all involved functions. In this setting, which is
termed ‘imperfect information’ in game theory, the leader might want to include a
‘safety margin’ by solving the ǫ-approximation (3.4) instead of the original problem
(1.1). Secondly and closely related, real-world decision makers suffer from ‘bounded
rationality’. In our setting, this means that the follower might not possess the
resources to solve his optimisation problem to global optimality. Instead, he might
settle for slightly suboptimal, e.g., ǫ-optimal decisions. By considering not only
optimal, but also ǫ-optimal follower decisions, the leader can hedge against followers
with potentially bounded rationality.

4 Semi-infinite solution procedure

In this section, we present a solution procedure for the ǫ-approximation (3.4)
of problem (1.1) with ǫ > 0 fixed:

min
x∈X

{

f(x) : g(x, y) ≤ 0 ∀ y ∈ Yǫ(x)
}

,

where
Yǫ(x) =

{

y ∈ Y : h(x, y) > h(x, y′) − ǫ ∀ y′ ∈ Y
}

.

We will employ semi-infinite programming principles [15] to solve this problem.
Note that the constraint ‘g(x, y) ≤ 0 ∀ y ∈ Yǫ(x)’ is equivalent to

[

y ∈ Yǫ(x) ⇒ g(x, y) ≤ 0
]

∀ y ∈ Y

⇔
[

y /∈ Yǫ(x)
]

∨
[

g(x, y) ≤ 0
]

∀ y ∈ Y

⇔
[

∃ y′ ∈ Y : h(x, y) ≤ h(x, y′) − ǫ
]

∨
[

g(x, y) ≤ 0
]

∀ y ∈ Y,

which bears structural similarity to the discussion in [21].4 We are thus lead to the
following reformulation of (3.4):

min
(x,y′)∈X×Y

f(x)

4In the context of [21], however, disjunctive constraints are needed to enforce dependent
second-stage constraints, whereas we employ disjunctive constraints in order to enforce g(x, y) ≤ 0
for all second-stage optimisers, i.e., to reflect the ‘pessimism’ of the leader.
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subject to
[

g(x, y) ≤ 0
]

∨
[

h(x, y) ≤ h(x, y′) − ǫ
]

∀ y ∈ Y.

Note that this problem contains an infinite number of constraints in general, namely
one for every y ∈ Y . In the spirit of semi-infinite programming, we solve this
problem iteratedly for finite subsets YK of Y . More precisely, at the Kth iteration,
we consider

min
(x,y′)∈X×Y

f(x) (4.1a)

subject to
[

g(x, yk) ≤ 0
]

∨
[

h(x, yk) ≤ h(x, y′) − ǫ
]

∀ yk ∈ YK (4.1b)

for a finite subset YK = {y1, . . . , yK} ⊆ Y . Clearly, if some x ∈ X is feasible for
(3.4), then it is also feasible for (4.1) and the objective values coincide. If x ∈ X
is feasible for (4.1), however, we cannot conclude that x is also feasible for (3.4).
Hence, we refer to (4.1) as YK-relaxation of (3.4). The optimal solution of (4.1),
(xK , y

′
K) ∈ X × Y , either satisfies

g(xK , y) ≤ 0 ∀ y ∈ Yǫ(xK)

or there is an yK+1 such that

yK+1 ∈ Yǫ(xK) ∧ g(xK , yK+1) > 0.

In the former case, xK is feasible for the ǫ-approximation (3.4) and at the same
time optimal for its YK-relaxation (4.1). Since the objective functions of both
problems coincide, we can conclude that xK is optimal for (3.4) and terminate. In
the latter case, yK+1 serves as a certificate for xK ’s infeasibility. In this case, we
set YK+1 = YK ∪ {yK+1} and iterate.

Before we consider the details of our solution procedure, we want to address two
issues of practical importance. Firstly, we discuss how the disjunctive constraint
(4.1b) can be expressed explicitly. Secondly, we consider a ‘tightened’ version of
the YK-relaxation that can lead to faster convergence in practice.

For a given yk ∈ YK , constraint (4.1b) is a disjunctive constraint of type
[

α(x) ≤ 0
]

∨
[

β(x) ≤ 0
]

. (4.2)

Disjunctions of this type are equivalent to the existence of a λ ∈ [0, 1] such that

λα(x) + (1 − λ)β(x) ≤ 0.

Similarly, (4.2) is equivalent to the existence of a λ ∈ {0, 1} such that

α(x) −Mλ ≤ 0 ∧ β(x) −M(1 − λ) ≤ 0,

where M denotes a sufficiently large number. Which reformulation leads to ‘easier’
problems depends on the remaining constraints and the available optimisation soft-
ware. In our numerical tests, we employ the first variant since it does not require
any additional constants.

We now consider the issue of tightening relaxation (4.1). In this problem, both
x and y′ are decision variables, but only x enters the objective function. Indeed, y′

plays the role of an auxiliary variable that decides which constraints ‘g(x, yk) ≤ 0’,
yk ∈ YK , are to be enforced.5 This implies that the choice y′ ∈ arg maxy∈Y h(x, y)
is always optimal since it leads to the least restrictions on x. In the extreme case,

5Here, our setting deviates from [21], where the auxiliary variable naturally occurs in the
objective function. As a result, the issue to be addressed in the following does not arise there.
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y′ ∈ Y satisfies h(x, y′) ≥ h(x, yk) + ǫ for all yk ∈ YK , which reduces (4.1) to
the essentially unconstrained problem minx∈X f(x). The effect just described can
result in a slow convergence until large parts of the Y -space are included in YK .
Hence, it is desirable to impose further constraints on y′. In the following, we
consider problem (4.1) with the additional constraint

g(x, y′) ≤ 0. (4.1c)

We have already seen that feasibility of x ∈ X for (3.4) implies existence of y′ ∈ Y
such that (x, y′) satisfies

[

g(x, y) ≤ 0
]

∨
[

h(x, y) ≤ h(x, y′) − ǫ
]

∀ y ∈ Y.

Since YK ⊆ Y , this directly implies feasibility of (x, y′) for (4.1) without (4.1c).
Moreover, since y′ ∈ Y , the condition is satisfied for y = y′ as well, leading to

[

g(x, y′) ≤ 0
]

∨
[

h(x, y′) ≤ h(x, y′) − ǫ
]

.

Since the second expression cannot be satisfied for ǫ > 0, this implies that g(x, y′) ≤
0. Thus, constraint (4.1c) is indeed implied by the ǫ-approximation (3.4). Although
(4.1c) is not needed to guarantee convergence of our semi-infinite solution proce-
dure, it can lead to significant performance improvements in practice. We will come
back to this point in Section 5.

We are now ready to present the solution procedure for the ǫ-approximation
(3.4) of the independent pessimistic bi-level problem (1.1).

Algorithm. Semi-infinite solution procedure for problem (3.4).

1. Initialisation. Set Y0 = ∅ and K = 0 (iteration counter).
2. Master Problem. Solve problem (4.1):

min
(x,y′)∈X×Y

f(x)

subject to
[

g(x, yk) ≤ 0
]

∨
[

h(x, yk) ≤ h(x, y′) − ǫ
]

∀ yk ∈ YK

g(x, y′) ≤ 0.

Let (xK , y
′
K) denote the/an optimal solution.

3. Subproblem. Calculate hK = maxy∈Y h(xK , y). Afterwards, solve the
following optimisation problem.

max
y∈Y

min
{

g(xK , y), h(xK , y) − hK + ǫ
}

.

Let yK+1 denote the/an optimal solution and ϑ its objective value.
4. Termination Criterion. If ϑ ≤ 0, terminate: xK is optimal for (3.4).

Otherwise, set YK+1 = YK ∪ {yK+1} and go to Step 2.

The algorithm proceeds by iterating between Steps 2 and 3. In Step 2, the
current YK-relaxation is solved. Step 3 checks the existence of yK+1 with

yK+1 ∈ Yǫ(xK) ∧ g(xK , yK+1) > 0.

If such a yK+1 exists, it is added to YK in Step 4 and the algorithm iterates.
Otherwise, g(xK , y) ≤ 0 is satisfied for all y ∈ Yǫ(xK) and the algorithm terminates
with xK as optimal solution for (3.4).
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It is commonly suggested to determine the ‘worst’ constraint violation when
solving the subproblem in Step 3, that is, to solve

max
y∈Y

{

g(xK , y) : h(xK , y) > hK − ǫ
}

,

instead. Note that the feasible region of this problem is not closed in general. For
most practical applications, however, it suffices to solve the approximation

max
y∈Y

{

g(xK , y) : h(xK , y) ≥ hK − ǫ
}

, (4.3)

which has a closed feasible region, instead. Although this approach typically leads
to a superior performance in practice, convergence cannot be guaranteed. Indeed, if
a maximiser y∗ of (4.3) satisfies g(xK , y

∗) > 0 and h(xK , y
∗) = hK−ǫ, the algorithm

would enter an infinite loop. These issues notwithstanding, we will employ (4.3) in
our numerical tests in Section 5.

Let us analyse the convergence properties of the algorithm. If the procedure
terminates after K < ∞ iterations, our previous discussion implies that the final
solution xK is optimal for (3.4). Assume that the algorithm does not terminate.
Since X is compact, the resulting sequence {xK}K contains accumulation points.
We can directly apply the argumentation developed by Blankenship and Falk in [6]
to show that every accumulation point thus generated is optimal for (3.4).

5 Numerical results

In this section, we employ the semi-infinite solution procedure from Section 4
to solve the ǫ-approximation (3.4) of several independent pessimistic bi-level prob-
lems (1.1). The results will allow us both to verify the performance of the overall
algorithm and to examine the use of tightening the YK-relaxation (4.1) by con-
straint (4.1c). All master and subproblems generated by our solution procedure
were solved with BARON 6.0 [27].6 We set the parameter ǫ to 10−3.

Problem 1. Convex first-stage and non-convex second-stage problem; the second-
stage solution does not depend on the first-stage variables.

min
−1≤x1,x2≤1

max
−1≤y1,y2≤1

{

‖x− y‖2 : y ∈ arg max
−1≤y′

1
,y′

2
≤1

‖y‖2

}

.

The second-stage problem has four global optima (y∗1 , y
∗
2) ∈ {−1, 1}2

that do not
depend on the value of (x1, x2), the first-stage variables. The first-stage prob-
lem aims to determine (x1, x2) whose maximal distance to any of these optima is
minimised. Hence, the optimal solution is (x∗1, x

∗
2) = (0, 0). The progress of our

algorithm is documented in Table 1. For this example, the progress is the same
for both the original and tightened YK-relaxation. In either case, the algorithm
quickly determines the optimal solution.

Problem 2. Convex first-stage and second-stage problem.

max
−1≤x≤1

{

x : x2 + y2 ≤ 1 ∀ y ∈ arg min
−1≤y≤1

‖x− y‖2

}

.

Contrary to Problem 1, the second-stage problem is convex. For a given first-
stage decision x, the optimal second-stage solution is y∗ = x. Hence, the optimal
second-stage solution depends on the first-stage variables. The first-stage objective
function maximises x, but the constraint limits x to x∗ = 1/

√
2 ≈ 0.707, which is

6BARON Optimiser: http://www.andrew.cmu.edu/user/ns1b/baron/baron.html.
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Table 1 Progress of our solution technique with and without tightened YK-
relaxation (4.1c) when applied to Problem 1. The columns describe (in order)
the iteration number, objective value, first-stage and second-stage solution and
the degree of constraint violation.

K objective xK yK g(xK , yK)

1 0.000 (0.000, 0.000) (−1.000,−1.000) 1.414
2 0.000 (−1.000,−1.000) (1.000, 1.000) 2.828
3 1.414 (0.000, 0.000) (0.000, 0.000) 0.000

the optimal solution. The progress of our algorithm with tightened YK-relaxation is
documented in Table 2. We see that the algorithm quickly determines the optimal
solution. Table 3 shows part of the progress of our algorithm with the original
YK-relaxation. In this case, large parts of the Y -space need to be examined, which
leads to a very slow progress. Here, the value of the tightened relaxation becomes
clearly visible.

Table 2 Progress of our solution technique with tightened YK -relaxation
(4.1c) when applied to Problem 2. See Table 1 for further details.

K objective xK yK g(xK, yK)

1 1.000 1.000 1.000 1.000
2 0.800 0.800 0.800 0.279
3 0.737 0.737 0.737 0.087
4 0.717 0.717 0.717 0.028
5 0.710 0.710 0.710 0.008
6 0.708 0.708 0.708 0.002
7 0.707 0.707 0.707 0.000

Table 3 Progress of our solution technique with original YK -relaxation, that
is, without constraint (4.1c), when applied to Problem 2. See Table 1 for
further details.

K objective xK yK g(xK , yK)

1 1.000 1.000 1.000 1.000
2 0.999 0.999 0.999 0.996
3 0.998 0.998 0.998 0.992
4 0.997 0.997 0.997 0.988
5 0.996 0.996 0.996 0.984
6 0.995 0.995 0.995 0.980
7 0.994 0.994 0.994 0.976
8 0.993 0.993 0.993 0.972
9 0.992 0.992 0.992 0.968

10 0.991 0.991 0.991 0.964
11 0.990 0.990 0.990 0.961
12 0.988 0.988 0.988 0.954
13 0.987 0.987 0.987 0.947
14 0.986 0.986 0.986 0.943
15 0.985 0.985 0.985 0.939
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Problem 3. Production planning without investment option (see Section 1).

max
x∈[0,200]

{

min
y∈Y(x)

{

(50 − 0.3[x+ y])x
}

:
xA

x+ y
≥ 0.7 ∀ y ∈ Y(x)

}

,

where

Y(x) = argmax
y∈[0,100]

{(50 − 0.3[x+ y]) y} .

The problem is equivalent to the first production planning problem from Section
1. Both the first-stage and the second-stage problem are convex. The progress of
our algorithm with tightened YK-relaxation is reported in Table 4. The algorithm
terminates at (x∗, y∗) = (94.707, 36.559) with a leader profit of 1005.86 and a
market share of 72.15%. In Section 1 we have seen that the optimal solution is
(x∗, y∗) = (89.75, 38.45) with a leader profit of 1035.49 and a market share of
70.01%. Here, we can see the conservative nature of the ǫ-approximation: the
determined solution constitutes a feasible but suboptimal solution for the original
problem. More accurate results can be obtained for smaller values of ǫ.

Table 4 Progress of our solution technique with tightened YK -relaxation
(4.1c) when applied to Problem 3. See Table 1 for further details.

K objective xK yK g(xK, yK)

1 10000.00 0.000 82.755 10000.00
2 2083.04 84.315 41.753 1056.12
3 1544.56 125.712 21.057 794.16
4 1270.12 105.467 31.177 320.21
5 1170.25 62.457 52.682 204.78
6 1122.01 96.888 35.467 124.68
7 1066.08 81.091 43.366 39.21
8 1036.11 94.749 36.537 30.40
9 1026.87 81.091 43.367 6.03

10 1006.45 94.707 36.557 0.59
11 1005.86 94.707 36.559 0.00

Problem 4. Production planning with investment option (see Section 1).

max
x∈[0,200]

{

min
y∈Y(x)

{

(50 − 0.3[x+ y])x
}

:
x

x+ y
≥ 0.7 ∀ y ∈ Y(x)

}

,

where

Y(x) = arg max
y∈[0,100]

max
{

(50 − 0.3[x+ y] − 50) y,

(50 − 0.3[x+ y] − 38) y − 500
}

.

The problem is equivalent to the second production planning problem from Section
1. The second-stage problem is non-convex, which causes the feasible region of the
first-stage problem to be non-closed. The progress of our algorithm with tight-
ened YK-relaxation is reported in Table 5. The algorithm terminates at (x∗, y∗) =
(104.864, 31.481) with a leader profit of 950.03 and a market share of 76.91%. In
section 1 we have seen that the optimal solution is (x∗, y∗) = (103.34, 31.67) with
a leader profit of 981.69 and a market share of 76.54%. Again, we can see the
conservative nature of the ǫ-approximation.
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Table 5 Progress of our solution technique with tightened YK -relaxation
(4.1c) when applied to Problem 4. See Table 1 for further details.

K objective xK yK g(xK, yK)

1 10000.00 0.000 99.950 10000.00
2 2068.46 90.375 58.723 1592.13
3 1677.15 120.129 23.849 859.48
4 1199.00 104.614 31.604 243.38
5 996.54 102.726 52.548 645.43
6 971.34 144.215 11.806 510.74
7 950.03 104.864 31.481 0.00

Problem 5. Principal-agent problem (see Section 1).

max
x∈[0,1]

min
y∈Y(x)

{

5(1 − x)y2
}

,

where

Y(x) = argmax
y∈[0,1]

{

10 + 5xy2 − y − (5[y − 1/2]+)2
}

.

The problem is equivalent to the principal-agent problem from Section 1. The
second-stage problem is non-convex, which causes the objective function of the
first-stage problem to be discontinuous. The progress of our algorithm with tight-
ened YK-relaxation is reported in Table 6. The algorithm terminates at (x∗, y∗) =
(0.393, 0.521) with a principal profit of 0.822. We determined the same solution
graphically in Section 1.

Table 6 Progress of our solution technique with tightened YK -relaxation
(4.1c) when applied to Problem 5. See Table 1 for further details.

K objective xK yK g(xK, yK)

1 5.000 0.000 0.000 5.000
2 0.949 0.473 0.529 0.210
3 0.849 0.394 0.521 0.029
4 0.822 0.393 0.521 0.000
5 0.822 0.393 0.521 0.000

Summing up, all test instances were solved within moderate numbers of itera-
tions. Moreover, the potential value of employing the tightened YK-relaxation has
been demonstrated in one of the examples. Although we did not provide results for
the application of the original YK -relaxation to Problems 3–5, we have encountered
similar effects as in Problem 2 for these instances as well.

6 Conclusion

In this paper, we studied the independent pessimistic bi-level problem. We
analysed several properties of this problem class and related it to existing models
from the literature. We discussed a convergent ǫ-approximation of the problem
and presented a semi-infinite solution approach. Although the ǫ-approximation was
primarily employed to guarantee tractability, it is also valuable in view of imperfect
information and bounded rationality, two key issues in real-world decision making.
To the best of our knowledge, this represents the first solution technique proposed
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for this problem class. We demonstrated the usability of our solution procedure
with several examples.

We identified several promising directions for future research. First and fore-
most, the development of efficient local optimisation techniques for pessimistic bi-
level problems would greatly enhance the practical relevance of this problem class.
One possible approach is to employ the semi-infinite framework suggested in Sec-
tion 4, but to solve the master problem (Step 2) merely to local optimality. In
this case, significantly larger problems could be solved since the subproblems are
of constant size and can be solved in parallel. The size of master problem, on the
other hand, grows linearly with the number of iterations and becomes increasingly
non-convex due to the inclusion of disjunctive constraints. The key challenge is to
analyse the convergence properties of the overall procedure.

Apart from the development of local optimisation procedures, several other
directions seem interesting. Firstly, our investigation should be extended to de-
pendent pessimistic bi-level and general multi-level problems. Secondly, a more
thorough complexity analysis is needed for a better understanding of independent
bi-level problems. Indeed, to the best of our knowledge, the complexity of the
nonlinear independent optimistic bi-level problem is unknown. Similarly, there
might be further relevant subclasses of the bi-level problem that can be solved in
polynomial time. Finally, little has been reported about the constraint seman-
tics of minimax and bi-level problems (see Section 2). A better understanding of
the similarities and differences between these models could lead to novel problem
formulations.
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