
PCQ: Parallel Compact Quantum Circuit Simulation
Shuang Liang, Yuncheng Lu, Ce Guo, Wayne Luk, Paul H. J. Kelly

Department of Computing, Imperial College London, London, UK
Email: {shuang.liang, yuncheng.lu19, c.guo, w.luk, p.kelly}@imperial.ac.uk

Abstract—Since quantum computers are not readily available,
much quantum computing research such as quantum algorithm
verification has to be conducted on classical computer platforms.
While many quantum circuit simulators have been developed
on CPUs and GPUs, the potential of FPGAs as a platform with
parallel computing capabilities and high energy efficiency has not
been fully explored. This paper describes a novel approach with
two modes of data movement optimization for an FPGA-based
parallel pipelined dataflow architecture targeting a compact
computation format. A data decoupling method is adapted to
partition computing tasks and data into non-interacting sub-
sets, significantly reducing external data interaction overhead.
The proposed approach shows significant promise in improving
performance and energy efficiency compared with existing state
vector based CPU, GPU, and FPGA implementations.

I. INTRODUCTION

Quantum computing is a promising research topic due to its
potential to deliver exponential speedups for specific problems
compared with classical computers, such as integer factoriza-
tion [1], database search [2], and optimization problems [3].
Back in the 1980s, physicists envisioned incorporating the
principles of quantum mechanics into computation [4], [5].
Decades later, during the 2020s, numerous research institutions
have successfully developed quantum device prototypes, such
as IBM [6], [7], Google [8], and D-Wave [9], [10]. Some even
claim to have achieved “quantum supremacy”, indicating that
quantum computers can solve problems intractable on classical
computers [11], [12].

However, current quantum computers are neither large-scale
nor reliable. At the same time, society is showing intense en-
thusiasm for identifying quantum advantages and discovering
and verifying quantum algorithms [13]–[15]. Developing sim-
ulators on classical computing technology becomes a means
of addressing quantum computer availability.

In recent times, simulating quantum circuits on classical
hardware platforms has become a flourishing research topic.
Many open-source libraries based on CPU/GPU [16]–[24]
have been developed to simulate quantum circuits. Among
these simulators, the state vector method is among the most
commonly used [25], [26]. It works by capturing evolving
quantum states in the quantum circuit. We implement our hard-
ware based on this method because simulation time increases
linearly rather than exponentially with the number of quantum
gates.

With the advancement of technology, Field-Programmable
Gate Arrays (FPGAs) have emerged as a promising alternative
due to their high parallelism, flexibility, and high energy
efficiency. Some efforts focus on deploying quantum circuits

with fixed structures, such as the Quantum Fourier Transform
(QFT) [27], [28] and the Shor’s algorithm [29] to achieve
speedup or high energy efficiency. There is also recent work
on reconfigurable FPGA-based simulators that can compute
various quantum circuits [30]–[33].

FPGA-based simulation, however, has not been fully ex-
plored. Three issues are as follows. (1) There is a significant
gap in performance between FPGA-based simulators and
GPU-based simulators. Moreover, there is scope to improve
the efficiency of FPGA-based simulators. (2) Current simula-
tion studies do not address memory wall issues that hinder
the extension of simulation to cover more qubits. (3) The
effect of fixed-point quantization on quantum circuits with an
increasing number of qubits needs investigation to support a
comprehensive evaluation.

This paper makes the following contributions to address the
above three issues.

1) General-Purpose FPGA Simulation and Balanced
Workload Scheduling: To improve its performance and
efficiency, we present an FPGA-based simulator that
features a set of parallel computing cores with a six-
stage pipeline based on a compact computing format.
Moreover, it supports data-aware automatic load dis-
tribution to keep computing cores balanced and highly
utilized (Section III).

2) Novel Dataflow Decoupling Approach: To alleviate
memory wall effects on our FPGA-based simulator, a
data decoupling approach is introduced to split tasks
and data into separate parts. A software tool has been
developed to automate task partitioning and performance
improvement (Section IV).

3) Quantization Bitwidth Experiments and Comprehen-
sive Evaluation: Our experiments explore fixed-point
quantization fidelity across different numbers of qubits
on quantum circuit benchmarks, which can provide
the basis for future low-bitwidth simulations. Through
our normalization efforts, we make a comprehensive
evaluation. Compared with state-of-the-art FPGA imple-
mentations, our design can achieve 1.3 to 497.2 times
speedup and 3.4 to 81.7 times efficiency improvement
(Section V).

An overview of the rest of the paper is as follows. Section II
reviews the theory of quantum circuit simulation based on
the state vector approach. Section III describes a workload
balancing strategy and our hardware architecture. Section IV
introduces the data decoupling approach and shows how it

can alleviate the memory wall effects on FPGA designs.
Section V presents our experimental methodology, followed
by comparisons with current FPGA/CPU/GPU designs and
analysis of the effects of the data decoupling approach.

II. BACKGROUND: QUANTUM COMPUTING THEORY

A. Qubit and Quantum Gate

The quantum bit (Qubit) is the smallest unit in quantum
computing [34]. Our work targets pure state simulation only, as
its generalization in supporting mixed states is straightforward
by representing a mixed state as a linear combination of
pure states. An n-qubit pure state, in its most general form
as a state vector, is represented by a length-2n complex-
valued vector with norm 1. Each element in the state vector
is called an amplitude. By convention, we adopt the bra-
ket notation, wherein a state is denoted by a ket vector
|ψ⟩ ∈ {ψ ∈ C2n |∥ψ∥ = 1}. Its corresponding bra vector
⟨ψ| is obtained by taking the Hermitian transpose of |ψ⟩. We
reserve the notation |k⟩ for k = 0, 1, · · · for the computational
basis vectors. An n-qubit |k⟩ state is the 2n-vector whose k-th
amplitude is 1, and other amplitudes are 0.

An n-qubit quantum gate is a 2n × 2n unitary matrix. A
quantum circuit is an ordered collection of quantum gates.
Our design choice also respects the fact that main quantum
circuits are basically composed of single-qubit gates and two-
qubit gates [34].

B. Quantum Circuit Simulation Using the State Vector Ap-
proach

Under the state vector description, applying a gate U on
a state |ψ⟩ is effectively performing a matrix-vector mul-
tiplication U |ψ⟩. For example, applying a single-qubit gate[
u00 u01
u10 u11

]
on state

[
α
β

]
gives the state:[

u00 u01
u10 u11

] [
α
β

]
=

[
u00α+ u01β
u10α+ u11β

]
(1)

C. Compact Computation Format

We extend (1) to multiple-qubit cases, and the matrix-vector
representation can be seen on the left of Fig. 1 (applying a
single-qubit gate on a 3-qubit state vector with various target
qubits). The target qubit in a quantum gate reflects the entan-
glement between elements inside the state vector. Considering
that most of the quantum gates in common circuits are single-
qubit gates, that is, there is no entanglement between most
elements, and the corresponding matrix representation has a
large number of zero elements. In our hardware, we only store
and compute nonzero elements to improve efficiency, which
we call the compact computing format. Some recent high-
performance works, such as QuEST [25], have adopted this
computing format.

III. HARDWARE ARCHITECTURE

In the compact computing format, a large matrix-vector
multiplication can be decomposed into multiple smaller
matrix-vector multiplications with non-zero elements. In our
architecture, parallel PEs are implemented, each of which
can perform compact matrix-vector multiplications with low
latency. To provide sufficient internal bandwidth, we also
implement multiple buffers with the same number of PEs
using on-chip BRAMs to store the state vector in a distributed
manner. The third column of Fig. 1 shows how elements are
stored in multiple buffers. For instance, for P buffers, Buffer
#1 stores the state P ∗ k, Buffer #2 stores the state P ∗ k + 1,
· · · , Buffer #P stores the state P ∗ k + P − 1 (k = 0, 1, · · ·).

A. Hardware Design Challenges and Our Solutions

For the parallel architecture mentioned above, to reduce the
computing latency, the two main challenges and our solutions
are as follows:

• How to maintain workload balance in the processing
element (PE) array: Fig. 1 presents how to complete a
balanced workload distribution when applying a single-
qubit gate with various target qubits. Distinct target qubits
signify the entanglement between different elements in
the state vector, which results in the required memory
access behavior variations. Since elements are distributed
in multiple buffers, this may occur in two situations (Data
Loading Mode in Fig. 1). Mode 1: Elements required
by each PE are in the same buffer. Mode 2: Elements
required by each PE are stored in two different buffers
(Section III-B).

• How to reduce the computing latency inside each PE:
To reduce the latency, our general-purpose PE features
a 6-stage fine-grained pipeline. It allows our architecture
to have a higher speedup than other FPGA simulators
(Section III-C).

B. Workload Balancing

In our simulator, load balancing is automatically imple-
mented by hardware modules based on the characteristics
of the input data. The core of workload balancing involves
delivering required data to PEs to complete computations. We
have two modules that help with automatic data delivery. The
first, Address Generator, generates addresses for buffers based
on the target qubit (fourth column of Fig. 1). The second,
Data Routing Module, is enabled in Mode 2 to help PEs get
required data from appropriate output ports of buffers (third
column of Fig. 1). The behavior of the memory access and
data routing depends on the following factors: the number of
PEs P , the number of qubits N , and the target qubit t.

1) Mode 1 (Unicast): When the target qubit t ≥ logP ,
the data transfer between buffers and PEs is in the unicast
mode. Actually, t determines the stride of reading elements in
the state vector, and P represents the stride between adjacent
elements in the same buffer. Therefore, logP can be seen as
the boundary for whether data reading involves two buffers.
In this mode, PE #k only receives data from Buffer #k, and

Balanced Workload Allocation

Single-qubit Gate
Computing Visualization

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

0

1

2
3
4

5

6
7

A0 B0

C0 D0

A2 B2

C2 D2

A1 B1

C1 D1

A3 B3

C3 D3

PE #1 PE #2

0

4

2

6

1

5

3

7

0

1

2
3
4

5

6
7

A0

A1

B0

B1

C0

C1

D0

D1

A2

A3

B2

B3

C2

C3

D2

D3

A0 B0

C0 D0

A2 B2

C2 D2

A1 B1

C1 D1

A3 B3

C3 D3

0

2

4

6

1

3

5

7

C3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

D0

D1

D2

D3

0

1

2
3
4

5

6
7

A0 B0

C0 D0

A2 B2

C2 D2

A1 B1

C1 D1

A3 B3

C3 D3

0

1

4

5

2

3

6

7

If Target Qubit = 2

If Target Qubit = 1

If Target Qubit = 0

Data Loading Mode Buffer Behavior

Multicast

Two Modes in Hardware to Maintain Workload Balance (Configurations: 2PE and 2Buffers)

Mode 2
Multicast

Mode 1
Unicast

PE #1 PE #2

PE #1 PE #2

Buffer
#1

0

2
4

6

1

3
5

7

PE #1

PE #2Buffer
#2

Unicast

Buffer
#1

0

2
4

6

1

3
5

7

PE #1

PE #2Buffer
#2

Unicast

Buffer
#1

0

2
4

6

1

3
5

7

PE #1

PE #2Buffer
#2

Buffer
#1

Buffer
#2

Read Visualization

Buffer
#1

Buffer
#2

Buffer
#1

Buffer
#2

Load Computations
to Hardware

Load Computations
to Hardware

Load Computations
to Hardware

0

2
4

6

1

3
5

7

0

2
4

6

1

3
5

7

0

2
4

6

1

3
5

7

Cycle
0

Read
Address

0
1 2
2 1
3 3

Cycle
0

Read
Address

0
1 2
2 1
3 3

Cycle
0

Read
Address

0
1 1
2 2
3 3

Cycle
0

Read
Address

0
1 1
2 2
3 3

Cycle
0

Read
Address

0
1 1
2 2
3 3

Cycle
0

Read
Address

0
1 1
2 2
3 3

Read Address

Fig. 1. Two modes (Unicast and multicast data loading modes) to maintain workload balance.

addresses for reading and writing are in jump order according
to t. A total of 2N−1/P compact matrix operations are
performed on PE #k. Meanwhile, the read address of Buffer
#k changes as [0, 2t−logP , 1, 1 + 2t−logP , · · ·] until all data
have been accessed.

2) Mode 2 (Multicast): When the target qubit t < logP ,
the data transfer between buffers and PEs is in the multicast
mode. In this mode, PE #k and PE #(k+2t) receive data from
Buffer #k and Buffer #(k+2t). At the input port of each PE,
there is a MUX to help it fetch data from different buffers at
different cycles. In this mode, the Address Generator generates
successive read addresses [0, 1, 2, · · ·] for all buffers.

C. Fully Pipelined Processing Element
The processing element (PE), the basic computing unit of

our hardware architecture, completes matrix operations on
2×1 vectors. The hardware architecture of the PE to complete
compact matrix-vector operations is shown in Fig. 2. If the
function of the 2×2 matrix is to exchange elements’ positions
(such as PauliX and PauliY), PEs will use a set of MUX
bypasses to directly exchange input data instead of using the
arithmetic circuits in Fig. 2.

This computing core has a six-stage pipeline without
pipeline bubbles. Multiplication of 2 × 2 matrix and 2 × 1
vector is calculated in the following order to reuse hardware:
For instance, to complete [w00, w01;w10, w11] × [d0; d1], the
computing core will compute w00×d0 and w10×d0 first, then
w01 × d1 and w11 × d1.

The specific dataflow is as follows: First, load d0, w00,
and w10 to registers in Multiplier Arrays. It then proceeds

to compute w00d0 and w10d0 and store them in the Accu-
mulation Register Group. Subsequently, accumulation results
are transferred to registers in the Intermediate Register Group
via DEMUX. Likewise, the next set of data d1, w01, and w11

are loaded to compute w01d1 and w11d1. Finally, the results
of compact matrix-vector multiplication can be obtained by
w00d0 + w01d1 and w10d0 + w11d1.

IV. DATA DECOUPLING AND DISTRIBUTED SIMULATION

In our architecture, external memory accesses are only
performed at the beginning and end of the simulation, leading
to high efficiency. However, this approach requires all state
vectors to stay on-chip for optimized efficiency; otherwise
external memory access can cause a bottleneck. To circumvent
this problem, most studies focus on a small number of qubits
(less than 21 qubits [30]–[32]) or resolve this issue with high-
bandwidth memory [33]. Inspired by a GPU-based simula-
tor [35], we present a data decoupling approach for FPGA
to simulate circuits with a large number of qubits efficiently
without using specialized memory. Furthermore, we develop
software to automate the decoupling according to the circuit
structure and memory limitation. This software tool can also
evaluate the improvement in external memory access efficiency
based on the data decoupling method.

Fig. 3 uses the directed graph to present how to decouple
a massive computing task (directed graph) to small tasks
(connected components) running on independent devices with
limited memory space. This directed graph has two types
of nodes: circles representing data and squares representing

𝒅𝟎_𝒓𝒅𝟏_𝒓

𝒘𝟏𝟎_𝒓

𝒘𝟏𝟎_𝒊𝒘𝟏𝟏_𝒊

𝒘𝟏𝟏_𝒓 𝒅𝟎_𝒊𝒅𝟏_𝒊

𝒘𝟏𝟎_𝒓

𝒘𝟏𝟎_𝒊𝒘𝟏𝟏_𝒊

𝒘𝟏𝟏_𝒓 D

D

D

D

D

D -

D D
D 𝒐𝟏_𝒓

𝒐𝟏_𝒊D D
D

Matrix-Vector Computing Core

D

D

D

D

D

D

𝒅𝟎_𝒓𝒅𝟏_𝒓

𝒘𝟎𝟎_𝒓

𝒘𝟎𝟎_𝒊𝒘𝟎𝟏_𝒊

𝒘𝟎𝟏_𝒓 𝒅𝟎_𝒊𝒅𝟏_𝒊

𝒘𝟎𝟎_𝒓

𝒘𝟎𝟎_𝒊𝒘𝟎𝟏_𝒊

𝒘𝟎𝟏_𝒓

D
D

𝒐𝟎_𝒓

𝒐𝟎_𝒊

D D
DMultiplier Array #1

𝒘𝟎𝟎_𝒊 × 𝒅𝟎_𝒓/ 𝒘𝟎𝟏_𝒊 × 𝒅𝟏_𝒓

𝒘𝟏𝟏_𝒓 × 𝒅𝟏_𝒓 − 𝒘𝟏𝟏_𝒊 × 𝒅𝟏 _𝒊

𝒘𝟏𝟎_𝒓 × 𝒅𝟎_𝒓 − 𝒘𝟏𝟎_𝒊 × 𝒅𝟎 _𝒊

𝒘𝟏𝟎_𝒊 × 𝒅𝟎_𝒓 + 𝒘𝟏𝟎_𝒓 × 𝒅𝟎 _𝒊

𝒘𝟏𝟏_𝒊 × 𝒅𝟏_𝒓 + 𝒘𝟏𝟏_𝒓 × 𝒅𝟏 _𝒊

𝒘𝟎𝟏_𝒓 × 𝒅𝟎_𝒓 − 𝒘𝟎𝟏_𝒊 × 𝒅𝟎 _𝒊

𝒘𝟎𝟎_𝒓 × 𝒅𝟎_𝒓 − 𝒘𝟎𝟎_𝒊 × 𝒅𝟎 _𝒊

𝒘𝟎𝟎_𝒊 × 𝒅𝟎_𝒓 + 𝒘𝟎𝟎_𝒓 × 𝒅𝟎 _𝒊

𝒘𝟎𝟏_𝒊 × 𝒅𝟏_𝒓 + 𝒘𝟎𝟏_𝒓 × 𝒅𝟏 _𝒊

𝒘𝟎𝟎_𝒓 × 𝒅𝟎_𝒓/ 𝒘𝟎𝟏_𝒓 × 𝒅𝟏_𝒓
𝒘𝟎𝟎_𝒓 × 𝒅𝟎_𝒊/ 𝒘𝟎𝟏_𝒓 × 𝒅𝟏_𝒊

𝒘𝟎𝟎_𝒊 × 𝒅𝟎_𝒊/ 𝒘𝟎𝟏_𝒊 × 𝒅𝟏_𝒊
-

𝒘𝟏𝟎_𝒊 × 𝒅𝟎_𝒓/ 𝒘𝟏𝟏_𝒊 × 𝒅𝟏_𝒓

𝒘𝟏𝟎_𝒓 × 𝒅𝟎_𝒓/ 𝒘𝟏𝟏_𝒓 × 𝒅𝟏_𝒓
𝒘𝟏𝟎_𝒊 × 𝒅𝟎_𝒊/ 𝒘𝟏𝟏_𝒊 × 𝒅𝟏_𝒊

𝒘𝟏𝟎_𝒓 × 𝒅𝟎_𝒊/ 𝒘𝟏𝟏_𝒓 × 𝒅𝟏_𝒊

Multiplier Array #2

Multiplier Array #3

Multiplier Array #4

A/B represents data in odd and even cycles (time division multiplexing)

0Clock
Cycle 1 2 3 4 5

D0 w0 w1 w0 w1 …

D1 w2 w3 w2 w3 …

D2 d0 d1 …

D

1Clock
Cycle 2 3 4 5 6

D3 a0 a1 a2 a3 …

D4 a0 a2

D5 a1 a3

O o0 o1

D0

50% Multipliers Reduction with only
1 increase cycle

D1

D2

D3
D4

D5 O

Odd Cycles Enable

Even Cycles Enable

w0
w1

d0

d1
w2

w3

an on

Accumulation Register
Group

Intermediate Register
Group

Read Timing Diagram

Write Timing Diagram

Fig. 2. Hardware architecture with time division multiplexing and full pipeline (Left: Hardware details. Right: Timing diagram of time division multiplexing).
Only the hardware responsible for dense matrix calculations is shown, the MUX bypass for data exchange is omitted for clarity.

operations. The data involved in the same operation are placed
on the same device because they will be calculated together.
In Fig. 3, we assign data on the same connected component to
the same device. Specifically, we will compute OP1, OP3, and
OP5 on device 1 and OP2, OP4, and OP6 on device 2. After
initialization, all devices only use local data for computation,
which eliminates the external communication overhead.

We can partition the circuit into several segments for deeper
circuits, where qubits become increasingly entangled. Seg-
menting circuits can extend this approach to cover simulations
with more quantum gates. In addition to its use in distributed
computing like similar approaches designed for GPU-based
simulations, this method can be used to execute divided
subtasks in sequence on a single device. Moreover, this method
is universal and orthogonal to other partitioning methods. It
can be applied to arbitrary quantum circuit simulations in
combination with other distributed methods, such as circuit
division [36].

V. EVALUATION

A. Experimental Methodology

Hardware Design Configuration and Testing Platform:
The proposed simulator (Configuration: 18-bit fixed-point
quantization/32 PEs/32 Buffers) is designed and implemented
in Verilog HDL through Vivado 2022.1. The performance of
this design is evaluated on AMD Xilinx XCVU9P.

CPU/GPU Comparison Baseline: Our CPU simulations
are performed with an Intel Core i9-11900K with 32GB
RAM. GPU simulations are performed with a Nvidia GeForce
RTX 3080 Ti with 12GB memory. We compare the proposed
simulator with three state-of-the-art CPU/GPU libraries with

default settings (the compilation time is deducted): QuEST
[25] (version 3.7.0), Qiskit [37] (version 0.45.1), and CUDA
Quantum [38] (version 0.5.0). Double-precision floating-points
are used among all CPU and GPU simulations. We measure
power consumption using a socket power meter. The power
for each design is offset by its idle power.

B. Quantization Experiment

The fidelity of quantum devices is a critical factor that
affects the performance of quantum algorithms. The low
fidelity of devices causes errors to accumulate in circuits,
which can result in wrong results in the quantum algorithm.
Similarly, the errors introduced by quantization should also be
considered in the quantum circuit simulation.

We evaluate the fidelity of fixed-point simulations on QFT,
known as one of the most commonly used quantum cir-
cuits. We take various numbers of qubits n and quantization
bitwidths qwidth. To ensure our design does not bias towards
any state vector configuration, in each run, the input state
vector is (Haar-)randomly initialized. We take Discrete Fourier
Transform (DFT) with double-precision floating-point as the
ground truth and compute the fidelity of fixed-point FPGA
simulations.

To help researchers explore the tradeoff between fidelity
and quantization bitwidth, we record the quantization bitwidth
needed to achieve a fidelity of, respectively, 0.95, 0.99, and
0.999 in Fig. 4. In this work, we choose the bitwidth that
can achieve a fidelity of 0.99, which exceeds the commonly
defined high fidelity [39]–[41].

H U|𝒋𝟎>

|𝒋𝟏>

|𝒋𝟐>

Splitting the Directed Graph into
Two Connected Components

Directed Graph
Representation of Computation

Legend

Small Device 1 with
Limited Memory

Small Device 2 with
Limited Memory

Data

OP

Operation

A|000>

A’’|000>

A’’|001>

A’’|100>

A’’|101>

A’’|010>

A’’|011>

A’’|110>

A’’|111>

A|000>

A|001>

A|010>

A|011>

A|100>

A|101>

A|110>

A|111>

A’|000>

A’|001>

A’|010>

A’|011>

A’|100>

A’|101>

A’|110>

A’|111>

OP
1

A’’|000>

A’’|001>

A|000>

A|001>

A’|000>

A’|001>

OP
3

A|100>

A|101>

A’’|100>

A’’|101>

A’|100>

A’|101>

OP
5

A’’|010>

A’’|011>

A’’|110>

A’’|111>

OP
4

OP
6

OP
2

A|110>

A|111>

A’|110>

A’|111>

A|010>

A|011>

A’|010>

A’|011>
Nodes in

Connected Component 2

Nodes in
Connected Component 1

Device
1

Device
2

Computation on Device 1

Computation on Device 2

OP
1

OP
2

OP
3

OP
4

OP
5

OP
6

Fig. 3. Split the directed graph of computation to connected components, where each component represents a sub-task that operates independently.

8 10 12 14 16 18 20 22 24
Number of Qubits

10

12

14

16

18

20

22

24

M
in

im
um

 Q
ua

nt
iz

at
io

n
B

itw
id

th Fid > 0.95
Fid > 0.99
Fid > 0.999

Fig. 4. Minimum quantization bitwidth needed to achieve target fidelity.

C. Comparison with FPGA Designs

Since there are many differences in the performance reports
of current FPGA-based simulators [32], we choose a bench-
mark, QFT, which is shared among most works. It should
be noted that our comparison does not include FPGA-based
simulators customized for the specific quantum circuits.

Table I summarizes the hardware performance of our design
and state-of-the-art general-purpose FPGA-based simulators.
Compared to these FPGA-based simulators, our design can
achieve 1.3 to 497.2 times speedup and 3.4 to 81.7 times
better efficiency. We instantiated XDMA (8GT/s and 8 lanes)
in our architecture for external memory access. To make a
fair comparison, when the memory access time or hardware
resource usage for a design is not available, we estimate the
performance using the same settings as our design.

Compared to [30], our architecture can achieve higher
performance due to skipping zero elements, high hardware
utilization, and a six-stage pipeline. Compared with [31],
we choose a suitable quantization bitwidth according to our
quantization experiments. It ensures that our simulations are
sufficiently accurate without having redundant bitwidth. In
addition, our design features more fine-grained optimization
and hardware reuse compared to [33].

For simulations with more qubits, some published designs

are limited by increased hardware resource consumption [27],
[30]. Performance of some designs is affected by external
communication overhead [31]. Although some designs, such
as [33], adopt high-bandwidth memory to alleviate memory
wall effects, memory access time still greatly affects the
overall latency. Due to the versatility of our design, the
computing resource usage will not increase with increasing
number of qubits. By applying the data decoupling method in
FPGA-based simulation, the limitations of on-chip memory
and external communication overhead can be significantly
reduced in this work.

D. Comparison with High-Performance CPU/GPU Libraries

Table II shows the performance comparisons of our work
and three high-performance CPU/GPU simulators on the same
benchmark. Compared to these CPU-based simulators, our
design can achieve 5.3 to 181.5 times speedup. Compared with
GPU-based simulators with powerful back-end optimization
and a high degree of parallelism, our design still achieves 0.3
to 8.1 times acceleration and 14.7 to 338.5 times better energy
efficiency. As the parallelism of the current design is 32,
versions with higher bandwidth and increased parallelism can
achieve higher speedup. Due to the characteristics of workload
balancing in our design, the computational latency decreases
linearly with the increase in parallelism.

E. Effect of Data Decoupling and Analysis

The above comparison demonstrates that an FPGA design,
as a competitive simulation platform, provides excellent en-
ergy efficiency. Next, we will illustrate the effectiveness of
the data decoupling approach with an example.

Still taking QFT as the benchmark, we assume a single
computing node can store the state vector of less than 20
qubits locally (in line with the storage resources of mainstream
FPGAs). Fig. 5 illustrates how much external memory access
overhead will be reduced with the number of qubits. Compared
with the conventional dataflow, this method can significantly
reduce the external memory access overhead when simulating

TABLE I
HARDWARE PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART FPGA-BASED SIMULATORS ON QFT-16

Leidö, 2022a[30] Hong et al, 2022 [31] Waidyasooriya et al, 2022a[33] Our Design

Platform Xilinx PYNQ Z-2 Xilinx XCKU115 Intel Stratix 10 MX2100 Xilinx XCVU9P

Technology (nm) 28 20 14 16

Frequency (MHz) 300b 160 299 232

Quantization 32-bit fixed-point 16-bit fixed-point 32-bit floating-point 18-bit fixed-point

LUT 14K (40K)c 19K 307K 40K (66K)

FF 22K (50K) 4K 673K 13K (41K)

BRAM 1.5 (51.5) NA 1513 64 (114)

DSP 128 128 1008 448

Latency (ms) 646.2 (646.3) 270.0 1.7 1.2 (1.3)

Throughputd(GOPS) 0.72 1.23 137.07 204.85

Efficiencyd GOPS/DSP 0.0056 0.0096 0.1360 0.4573
GOPS/MLUT 18.0 64.7 446.5 3103.8

a. For different benchmarks, the normalization is carried out according to the number of quantum gates and the data size. Moreover,
we use Xilinx FPGA as a benchmark for uniform resource usage calculation across platforms.

b. [30] did not report the frequency, 300MHz is the ideal result given by authors.
c. A (B): A is the computing time/hardware resources, and B represents the total time/hardware resources (computing+data transfer).
d. For fair comparison, the performance of all designs is scaled linearly based on the 16nm technology.

TABLE II
PERFORMANCE COMPARISON OF OUR FPGA SIMULATOR AND MAINSTREAM CPU/GPU SIMULATION LIBRARIES ON QFT-16

Qiskit QuEST CUDA Quantum Our Design#Parallel 32 Our Design#Parallel 128a

Platform Intel Core i9-11900K Nvidia 3080Ti Intel Core i9-11900K Nvidia 3080Ti Intel Core i9-11900K Nvidia 3080Ti Xilinx XCVU9P scaling to 8nm

Technology (nm) 14 8 14 8 14 8 16 8

Power (W) 150.0 157.9 39.0 197.6 246.5 227.5 3.8 15.2

Latency (ms) 15.90 10.10 6.55 0.35 225.00 1.06 1.20 (1.24) 0.15 (0.19)

Executions per second 62.9 99.0 152.7 2857.1 4.4 943.4 806.5 5263.2

Efficiency (Exe/s/W) 0.419 0.627 3.915 14.459 0.018 4.147 212.237 346.263

a. Estimation: According to TSMC’s technical report, an approximate linear frequency scaling is used here. Data transfer using PCIe Gen3 16lanes on XCVU9P.

462
506

552
600

650
702

756
812

870
930

8 10 12 14 16 20 22 26 28 32

0

100

200

300

400

500

600

700

800

900

1000

21 22 23 24 25 26 27 28 29 30

N
or

m
al

iz
ed

 M
em

or
y

A
cc

es
s

O
ve

rh
ea

d

Number of Qubits

Straightforward

Proposed

×58 ×51 ×46 ×43 ×41 ×35 ×34 ×31 ×31 ×29

Fig. 5. Memory access efficiency improvement caused by proposed data
decoupling (Normalization means that the entire state vector movement is
treated as one transmission).

large quantum circuits. Specifically, it can increase memory
access efficiency by 29 to 58 times.

VI. CONCLUSION

This paper develops PCQ, a general-purpose FPGA-based
quantum circuit simulator with a compact computing format,

fully pipelined computing cores, and balanced workload distri-
bution. In comparison to Qiskit, QuEST, and CUDA Quantum,
three high-performance GPU simulators, it can achieve 0.3
to 8.1 times speedup and 14.7 to 338.5 times better energy
efficiency.

Our work includes analyzing the memory wall in FPGA-
based simulations. A data decoupling method and correspond-
ing automation software have been developed to alleviate its
effects. On a device capable of storing less than 220 complex
numbers locally, when dealing with QFT with the number
of qubits from 21 to 30, this approach increases the external
memory access efficiency by 29 to 58 times.

Current and future work includes exploring further opti-
mizations that can benefit the proposed approach, and develop-
ing tools that support the automation of design implementation
and debugging.

ACKNOWLEDGMENT

The support of UK EPSRC (grant number EP/W032635/1,
EP/V028251/1, EP/S030069/1 and EP/X036006/1), Intel and
AMD is gratefully acknowledged.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science. IEEE, 1994, pp. 124–134.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, 1996, pp. 212–219.

[3] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[4] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, no. 6/7, 1982.

[5] D. Deutsch, “Quantum theory, the church–turing principle and the
universal quantum computer,” Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences, vol. 400, no. 1818,
pp. 97–117, 1985.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt,
H. Nayfeh, Y. Wu, M. Zaletel, K. Temme et al., “Evidence for the
utility of quantum computing before fault tolerance,” Nature, vol. 618,
no. 7965, pp. 500–505, 2023.

[7] E. H. Chen, G.-Y. Zhu, R. Verresen, A. Seif, E. Baümer, D. Layden,
N. Tantivasadakarn, G. Zhu, S. Sheldon, A. Vishwanath et al., “Realizing
the nishimori transition across the error threshold for constant-depth
quantum circuits,” arXiv preprint arXiv:2309.02863, 2023.

[8] “Suppressing quantum errors by scaling a surface code logical qubit,”
Nature, vol. 614, no. 7949, pp. 676–681, 2023.

[9] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare,
A. J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang et al., “Coherent
quantum annealing in a programmable 2,000 qubit ising chain,” Nature
Physics, vol. 18, no. 11, pp. 1324–1328, 2022.

[10] A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare,
A. J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud et al., “Quantum
critical dynamics in a 5,000-qubit programmable spin glass,” Nature,
pp. 1–6, 2023.

[11] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, no. 6,
pp. 595–600, 2018.

[12] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[13] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, 2021.

[14] E. Peters, J. Caldeira, A. Ho, S. Leichenauer, M. Mohseni, H. Neven,
P. Spentzouris, D. Strain, and G. N. Perdue, “Machine learning of
high dimensional data on a noisy quantum processor,” npj Quantum
Information, vol. 7, no. 1, p. 161, 2021.

[15] A. Assouel, A. Jacquier, and A. Kondratyev, “A quantum generative
adversarial network for distributions,” Quantum Machine Intelligence,
vol. 4, no. 2, p. 28, 2022.

[16] Y. Gao, J. Xu, and H. Wang, “CuNH: Efficient GPU implementations
of post-quantum kem newhope,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 3, pp. 551–568, 2021.

[17] A. Li, O. Subasi, X. Yang, and S. Krishnamoorthy, “Density matrix
quantum circuit simulation via the bsp machine on modern GPU
clusters,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–
15.

[18] D. Lykov, A. Chen, H. Chen, K. Keipert, Z. Zhang, T. Gibbs, and
Y. Alexeev, “Performance evaluation and acceleration of the qtensor
quantum circuit simulator on GPUs,” in 2021 IEEE/ACM Second In-
ternational Workshop on Quantum Computing Software (QCS). IEEE,
2021, pp. 27–34.

[19] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas,
D. Garcı́a-Martı́n, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, “Qibo:
A framework for quantum simulation with hardware acceleration,”
Quantum Science and Technology, vol. 7, no. 1, p. 015018, 2021.

[20] S. Efthymiou, M. Lazzarin, A. Pasquale, and S. Carrazza, “Quantum
simulation with just-in-time compilation,” Quantum, vol. 6, p. 814, 2022.

[21] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C.-F. Chen et al., “Qiskit: An open-source framework for quantum
computing,” Accessed on: Mar, vol. 16, 2019.

[22] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: An open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
2018.

[23] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software
methodology for compiling quantum programs,” Quantum Science and
Technology, vol. 3, no. 2, p. 020501, 2018.

[24] S. Mandrà, J. Marshall, E. G. Rieffel, and R. Biswas, “HybridQ: A
hybrid simulator for quantum circuits,” in 2021 IEEE/ACM Second
International Workshop on Quantum Computing Software (QCS). IEEE,
2021, pp. 99–109.

[25] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and
high performance simulation of quantum computers,” Scientific reports,
vol. 9, no. 1, p. 10736, 2019.

[26] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–24.

[27] Y. Qian, M. Wang, J. Chen, L. Wang, and Z. Feng, “Efficient FPGA
emulation of quantum fourier transform,” in 2019 China Semiconductor
Technology International Conference (CSTIC). IEEE, 2019, pp. 1–3.

[28] T. M. Aye and M. Iwahashi, “Implementation and analysis of quantum
fourier transform gates over FPGA framework,” in 2019 8th Mediter-
ranean Conference on Embedded Computing (MECO). IEEE, 2019,
pp. 1–5.

[29] X. Zhang, Y. Zhao, R. Li, X. Li, Z. Guo, X. Zhu, and G. Dong, “The
quantum shor algorithm simulated on FPGA,” in 2019 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Com-
puting & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE,
2019, pp. 542–546.

[30] E. Leidö, “Optimizing quantum computer simulation,” Master’s thesis,
Chalmers University of Technology, 2022.

[31] Y. Hong, S. Jeon, S. Park, and B.-S. Kim, “Quantum circuit simulator
based on FPGA,” in 2022 13th International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 2022, pp.
1909–1911.

[32] N. Mahmud and E. El-Araby, “Improving emulation of quantum algo-
rithms using space-efficient hardware architectures,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 206–213.

[33] H. M. Waidyasooriya, H. Oshiyama, Y. Kurebayashi, M. Hariyama, and
M. Ohzeki, “A scalable emulator for quantum fourier transform using
multiple-FPGAs with high-bandwidth-memory,” IEEE Access, vol. 10,
pp. 65 103–65 117, 2022.

[34] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge University Press, 2010.

[35] P. Zhang, J. Yuan, and X. Lu, “Quantum computer simulation on
multi-GPU incorporating data locality,” in Algorithms and Architectures
for Parallel Processing: 15th International Conference, ICA3PP 2015,
Zhangjiajie, China, November 18-20, 2015, Proceedings, Part I 15.
Springer, 2015, pp. 241–256.

[36] R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, “Quantum supremacy
circuit simulation on sunway taihulight,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 4, pp. 805–816, 2019.

[37] IBM, “Qiskit,” https://qiskit.org/, last accessed 2023-12-23, Version
0.45.1.

[38] J.-S. Kim, A. McCaskey, B. Heim, M. Modani, S. Stanwyck, and
T. Costa, “CUDA Quantum: The platform for integrated quantum-
classical computing,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–4.

[39] J. Gibbs, K. Gili, Z. Holmes, B. Commeau, A. Arrasmith, L. Cincio,
P. J. Coles, and A. Sornborger, “Long-time simulations with high fidelity
on quantum hardware,” arXiv preprint arXiv:2102.04313, 2021.

[40] L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance,
K. Thirumalai, J. Goodwin, D. Lucas, and C. Ballance, “High-rate, high-
fidelity entanglement of qubits across an elementary quantum network,”
Physical Review Letters, vol. 124, no. 11, p. 110501, 2020.

[41] A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph,
M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum
photonic circuits,” Applied Physics Letters, vol. 97, no. 21, 2010.

