
Algorithms

Data Flow

Analysis

Control Flow

Analysis

Abstract

Interpretation

Type and Effect

Systems

Correctness

Efficiency

Algorithms – p.1/56

We will abstract away from the details of a particular
analysis by considering equations or inequations in a set of
flow variables for which we want to solve the system. For
example:

in Data Flow Analysis there might be separate flow
variables for the entry and exit values at each program
point,

whilst in Constraint Based Analysis there would be a
separate flow variable for the cache at each program
point and for the environment at each program variable.

Algorithms – p.2/56

Consider the following program and Reaching Definitions
analysis:

if

� ��� � �

then

�

while

� ��� � �

do

�
x := � � � �
	

else

�

while

� � � � �

do
�

x := � � � �
	

;�

x := � � �

Algorithms – p.3/56

� ��� � ���� �� 	 � ��� � � �� � � � � 	 � � � � � �� � �� 	

� ��� � ���� �� 	 � � � �� � � � � 	 � ���� � � �! 	 � � �� � � � � 	 � � � � � �� � �� 	

� ��� � ���� �! 	 � � � �� � � � � 	
� � � � � � �! 	 � � � ��� � �� � �! 	" � � � � 	 � �

� ��� � ���� �# 	 � � � �� � � � � 	 � ���� � � �$ 	 � � �� � � � # 	 � � � � � �� � �# 	

� ��� � ���� �$ 	 � � � �� � � � # 	
� � � � � � �$ 	 � � � ��� � �� � �$ 	" � � � � 	 � �

� ��� � ���� �% 	 � � � �� � � � � 	 � ���� � � � # 	

� � � � � � � % 	 � � � ��� � �� � � % 	" � � � � 	 �

Here

��& � ' �

x ()	*
and we also allow a string of subscripts

on X; for example,

� � � � � ' �

x (! 	 (�

x ($ 	 (�

x (% 	 (�

x (+	*

.

Algorithms – p.4/56

When expressed as a constraint system in the flow
variables

'-, � (. . . (, � �* it takes the form

, � � �/� ,0 � , �

, � � ,0 ,21 ,23 � , �

, � � ,23 ,1 � �, �" � � � � 	 � �

, � � ,0 , � � , �4 � , �

, � � , �4 , � � � �, �" � � � � 	 � �

, � ,23 , �4 , � � � �, " � � � � 	 �

where , � (. . . (, correspond to

� � � � ���� � � 	 (. . . (� � � � �� � � % 	

and

,0 (. . . (, � � correspond to

� ��� � � � �� 	 (. . . (� � �� � � � % 	

.

Algorithms – p.5/56

Since we are generally interested in the solution for
� � � � ���� ,

we shall in this and subsequent examples consider the
following simplified equation system:

, � � ���

, � � , � �, �" � � � � 	 � �

, � � , �

, � � , � �, �" � � � � 	 � �

, � � , �

, � , � , �

Clearly nothing is lost by these changes in representation.

Algorithms – p.6/56

The following inequation system (where all left hand sides
are the same)

5 67 � . . . 5 6 7 8
and the equation

5 � 5 97 � 9 . . . 97 8

have the same solutions: any solution of the former is also a
solution of the latter and vice versa. Furthermore, the least
solution of the above systems is also the least solution of

5 �7 � 9 . . . 97 8

Algorithms – p.7/56

We make the following assumptions:

There is a finite constraint system

:

of the form

� 5; 6 7 ; 	 <;>= �
for

?@ �

where the left hand sides are not necessarily
distinct.

The set FV

�7 ; 	 of flow variables contained in a right hand
side

7 ; is a subset of the finite set

� � ' 5; A � B C B ?*

.

A solution is a total function,

DFE � G H

, assigning each
flow variable a value in the complete lattice

� H (I	

satisfying the Ascending Chain Condition.

Algorithms – p.8/56

The terms are interpreted with respect to solutions,DE � G H

, and we write

� �7 � � DKJ H

to represent the
interpretation of

7

with respect to

D

.

The interpretation

� �7 � � D

of a term

7

is monotone in

D

and
its value only depends on the values

' D � 5	 A 5J FV

�7 	*

of the solution on the flow variables occurring in the
term.

In the interest of generality, we leave the nature of the right

hand sides,

7 ; , unspecified.

Algorithms – p.9/56

Consider the following expression:

� �

fn 5 L 5 � 	 � �

fn M L M �	 �	 �
Using the notation above, the constraints are:

, � N , , � N '
fn 5 L 5 �*

, � N , 0 , � N '

fn M L M �*

, � N

if

'

fn 5 L 5 �* O , � then , � , � N

if

'

fn M L M �* O , � then , �

, N

if

'

fn 5 L 5 �* O , � then , � ,0 N

if

'

fn M L M �* O , � then , �

Here , � to , � correspond to

P � � 	

to

P �$ 	

, , corresponds to

Q �x	

and ,0 corresponds to Q �y	

.

Algorithms – p.10/56

Our starting point is an abstract variant of the two worklist
algorithms. It is abstract because it is parameterised on the
details of the worklist and on the associated operations and
values:

empty is the empty worklist;

insert(

� 5 67 	

,W) returns a new worklist that is as W
except that a new constraint 5 6 7

has been added;

extract(W) returns a pair whose first component is a
constraint 5 6 7

in the worklist and whose second
component is the smaller worklist obtained by removing
an occurrence of 5 6 7

.

Algorithms – p.11/56

In its most abstract form the worklist could be viewed as a
set of constraints with the following operations:

empty =

R

function insert(

� 5 6 7 	

,W)
return

 ' 5 67 *

function extract(W)
return (

� 5 67 	

,W

" ' 5 6 7 *

) for some 5 6 7

in W

However, it may be more appropriate to regard the worklist

as a multiset, as a list with additional structure, or as a com-

bination of other structures.

Algorithms – p.12/56

INPUT: A system

:

of constraints: 5 � 6 7 � (. . . (5 < 6 7 <

OUTPUT: The least solution: Analysis

METHOD: Step 1: Initialisation (of W, Analysis and infl)
W := empty;

for all 5 6 7
in

:
do

W := insert(

� 5 6 7 	

,W);

Analysis[5] :=

S

; infl[5] :=

R

;

for all 5 6 7

in

:

do

for all 5 T in FV

�7 	

do

infl[5 T] := infl[5 T] ' 5 6 7 *

;

Algorithms – p.13/56

Step 2: Iteration (updating W and Analysis)
while W

U � empty do

(

� 5 6 7 	

,W) := extract(W);

new := eval(

7

,Analysis);

if Analysis[5] U 6
new then

Analysis[5] := Analysis[5] 9

new;

for all 5 T 6 7 T

in infl[5] do

W := insert(

� 5 T 6 7 T	

,W);

Algorithms – p.14/56

USING: function eval(

7

,Analysis)

return

� �7 � �

(Analysis)

value empty

function insert(
� 5 67 	

,W)

return . . .
function extract(W)

return . . .

Algorithms – p.15/56

Consider the simplified equation system. After step 1 of the
abstract worklist algorithm, the worklist W contains all
equations and the influence sets are as follows (where we
identify the equations with the flow variables on the left
hand side):

, � , � , � , � , � ,

VXW Y '-, � (, �* '-, � (, * '-, �* '-, � (, * ', �* R

Additionally

ZW [\^] _ V _ is set to

R

for all flow variables. We shall

continue this example later.

Algorithms – p.16/56

Assume that the size of the right hand sides of constraints

is at most

@ �

and that the evaluation of a right hand

side takes

` � 	

steps; further assume that each assign-

ment takes

` � � 	

step. Each constraint is influenced by at

most flow variables and therefore the initialisation of the

influence sets takes

` � ?ba ? . 	
steps. Writing

?dc for the

number of constraints in infl[5] we note that c e f ?dc B . ?

.

Algorithms – p.17/56

Assuming that

H

is of finite height at most

g@ �

, the
algorithm assigns to Analysis[5] at most

g

times, adding

?dc

constraints to the worklist, for each flow variable 5J �

.
Thus, the total number of constraints added to the worklist
is bounded from above by:

?a � g .
c e f

? c 	 B ?a � g . . ?	

Since each element on the worklist causes a call to eval, the

cost of the calls is

` � ? . a g . � . ?	

. This gives an overall

complexity of

` � g . � . ?	
.

Algorithms – p.18/56

The worklist as a LIFO:

empty = nil

function insert(

� 5 67 	
,W)

return cons(

� 5 6 7 	
,W)

function extract(W)

return (head(W), tail(W))

Algorithms – p.19/56

A constraint of the form

ZW [\] _ V _ �) T � 6 h& � ZW [\] _ V _ �) � 	
is

represented on the worklist W of the data flow algorithm by
the pair

�) () T	

. The influence sets were indirectly
represented through the flow,

i

; to be more precise,
infl[

) T

] � ' �) T () T T	 J i A) T TJ jlk m*

.

?

is proportional to the number
�

of elementary blocks.

It is usual to take � � .

Thus the upper bound on the complexity of the abstract
algorithm specialises to

` � g . �	

.

For an analysis such as Reaching Definitions Analysis
where

g

is proportional to

�

this gives

` � � � 	

.

Algorithms – p.20/56

Constraints of the form

'7 * Oon ,n � On or

'7 * On � Ln � On

are represented on the worklist W by any one of the flow
variablesn � orn � occurring on the left hand side. The
influence sets are represented using the edge array, E; to
be more precise, infl[n] � E[n]

The initialisation of the influence sets in step 1 of the
abstract algorithm corresponds to step 2 of the CFA
algorithm;

The inclusion on the worklist of all the constraints in
infl[n] is replaced by the for-loop in step 3 of the CFA
algorithm.

Note that Analysis[n] is written as D[n].

Algorithms – p.21/56

The complexity for this instance of the abstract algorithm is
related to the earlier worklist algorithm in the following way:

?

for a system generated from Control Flow Analysis is` �qp � 	

where p is the size of the expression.

g

is bounded by p .

Once again, it is usual that � � .

Thus the upper bound on the complexity of the abstract
algorithm specialises to

` �qp �	

.

Algorithms – p.22/56

One disadvantage of the LIFO strategy as presented above,

is that we do not check for the presence of a constraint when

adding it to the worklist. Hence the worklist may evolve so

as to contain multiple copies of the same constraint and this

may lead to unnecessarily recalculating terms before their

free variables have had much chance of getting new values.

This is illustrated in the following example; obviously a rem-

edy is to modify the LIFO strategy such that it never inserts

a constraint when it is already present.

Algorithms – p.23/56

�, � (, � (, � (, � (, � (, � R R R R R R

�, � (, � (, � (, � (, � (, � (, � ��� r r r r r

�, � (, (, � (, � (, � (, � (, � (, � r � � � r r r r

�, � (, (, � (, � (, � (, � (, � (, � r r � � � r r r

�, (, � (, � (, � (, � (, � (, � r r r r r r

�, � (, � (, � (, � (, � (, � r r r r r � � �

�, � (, (, � (, � (, � (, � (, � r r r � � � r r

�, � (, (, � (, � (, � (, � (, � r r r r � � � r

�, (, � (, � (, � (, � (, � r r r r r r

�, � (, � (, � (, � (, � r r r r r � � � �

...
...

...
...

...
...

...� � r r r r r r

Algorithms – p.24/56

An obvious alternative to the use of a LIFO strategy is to
use a FIFO strategy where the list is used as a queue.
Again it may be worthwhile not to insert a constraint into a
worklist when it is already present. However, rather than
going deeper into the LIFO and FIFO strategies, we shall
embark on a treatment of more advanced insertion and
extraction strategies.

A careful organisation of the worklist may lead to algorithms

that perform better in practice; however, in general we will

not be able to improve our estimation of the worst case com-

plexity to reflect this.

Algorithms – p.25/56

We explore the idea that changes should be propagated
throughout the rest of the program before returning to
re-evaluate a constraint.

One way of ensuring that every other constraint is
evaluated before re-evaluating the constraint which caused
the change is to impose some total order on the constraints.

To obtain a suitable ordering we shall impose a graph struc-

ture on the constraints and then use an iteration order based

on reverse postorder.

Algorithms – p.26/56

Given a constraint system

: � � 5; 67 ; 	 <;>= � we can construct
a graphical representation

s�t of the dependencies between
the constraints in the following way:

there is a node for each constraint 5; 67 ; , and

there is a directed edge from the node for 5; 6 7 ; to the
node for 5u 6 7 u if 5; appears in

7 u (i.e. if 5u 6 7 u appears
in infl[5;]).

Algorithms – p.27/56

This constructs a directed graph. Sometimes it has a root,
i.e. a node from which every other node is reachable
through a directed path.

This will generally be the case for constraint systems
corresponding to forward analyses of While programs.

It will not in general be the case for constraint systems
corresponding to backward analyses for While
programs nor for constraint systems constructed for
Constraint Based Analysis.

We therefore need a generalisation of the concept of root.

One obvious remedy is to add a dummy root and enough

dummy edges.

Algorithms – p.28/56

A more elegant formulation, that avoids cluttering the graph
with dummy nodes and edges, is to consider a handle,
i.e. a set of nodes such that each node in the graph is
reachable through a directed path starting from one of the
nodes in the handle. Indeed, a graph

s
has a root v if and

only if

s

has

' v* as a handle.

One can take the entire set of nodes of a graph as a handle

but it is more useful to choose a minimal handle: a handle

such that no proper subset is also a handle; minimal handles

always exist (although they need not be unique).

Algorithms – p.29/56

We can then construct a depth-first spanning forest from the
graph

s�t and handle

wt using the algorithm on the next
slide. This also produces an array, rPostorder, that associates
each node (i.e. each constraint 5 6 7

) with its number in a
reverse postorder traversal of the spanning forest.

We sometimes demand that a constraint system

� 5; 6 7 ; 	 <;>= �

is listed in reverse postorder.

Algorithms – p.30/56

INPUT: A directed graph

� ? (x	

with

y

nodes
and handle

w

OUTPUT: (1) A DFSF

z � � ? (x|{ 	
, and

(2) a numbering rPostorder of the nodes indicating
the reverse order in which each node
was last visited and represented as an
element of array [

?

] of int

Algorithms – p.31/56

METHOD: i :=

y

;

mark all nodes of

?

as unvisited;

let

x{ be empty;

while unvisited nodes in

w
exists do

choose a node h in

w

;

DFS(h);

Algorithms – p.32/56

USING: procedure DFS(p) is

mark p as visited;

while

�p (p T	 J x

and p T
has not been visited do

add the edge

�qp (p T	
to

x{ ;

DFS(p T

);

rPostorder[p] := i;

i := i r 1;

Algorithms – p.33/56

, �
, �

, �

, �
, �

,

} }

}
}

}
}

} }

(a)

, �

, � , �

, , � , �

~ �
~ �

�

(b)

Algorithms – p.34/56

Conceptually, we now modify step 2 of the worklist algorithm

so that the iteration amounts to an outer iteration that con-

tains an inner iteration that visits the nodes in reverse pos-

torder.

Algorithms – p.35/56

To achieve this, without actually changing the abstract
algorithm, we shall organise the worklist W as a pair
(W.c,W.p) of two structures:

The first component, W.c, is a list of current nodes to be
visited in the current inner iteration.

The second component, W.p, is a set of pending nodes
to be visited in a later inner iteration.

Nodes are always inserted into W.p and always
extracted from W.c;

when W.c is exhausted the current inner iteration has
finished and in preparation for the next we must sort W.p
in the reverse postorder given by rPostorder and assign
the result to W.c.

Algorithms – p.36/56

empty = (nil,

R

)

function insert(

� 5 67 	

,(W.c,W.p))

return (W.c,

� � � ' 5 6 7 * 	
)

function extract((W.c,W.p))

if W.c = nil then

W.c := sort rPostorder(W.p);

W.p :=
R

return (head(W.c), (tail(W.c),W.p))

Algorithms – p.37/56

� � ', � (. . . (, * R R R R R R

�, � (, � (, � (, � (, � ', � (, �* � � r r r r r

�, � (, � (, � (, � '-, � (, � (, � (, * r � � � r r r r

�, � (, � (, � '-, � (, � (, � (, * r r � � � r r r

�, � (, � ', � (. . . (, * r r r � � � r r

�, � ', � (. . . (, * r r r r � � � r

�, � (, � (, � (, � (, � R r r r r r � � � �

�, � (, � (, � (, � R r r r r r r

�, � (, � (, � R r r r r r r

�, � (, � R r r r r r r

�, � R r r r r r r

� � R r r r r r r

Algorithms – p.38/56

Now suppose that we change the above algorithm such that

each time W.c is exhausted we assign it the list [

� (. . . (?

]

rather than the potentially shorter list obtained by sorting

W.p. This may lead to more evaluations of right hand sides of

constraints but it simplifies some of the book-keeping details.

Now our only interest in W.p is whether or not it is empty; let

us introduce a boolean, change, that is false whenever W.p is

empty. Also let us split the iterations into an overall outer

iteration having an explicit inner iteration; each inner itera-

tion will then be a simple iteration through all constraints in

reverse postorder.
Algorithms – p.39/56

Thus we arrive at the Round Robin Algorithm:

INPUT: A system

:

of constraints: 5 � 6 7 � (. . . (5 < 6 7 <

ordered

�

to

?

in reverse postorder

OUTPUT: The least solution: Analysis

METHOD: Step 1: Initialisation
for all 5J �

do

Analysis[5] :=

S

change := true;

Algorithms – p.40/56

Step 2: Iteration (updating Analysis)
while change do

change := false;

for

C

:= 1 to N do

new := eval(

7 ; ,Analysis);

if Analysis[5;] U 6
new then

change := true;

Analysis[5;] := Analysis[5;] 9

new;

USING: function eval(
7

,Analysis)

return

� �7 � �
(Analysis)

Algorithms – p.41/56

� Q� � R R R R R R

� � [\ _ �
� Q� � � � r r r r r

� Q� � r � � � r r r r

� Q� � r r � � � r r r

� Q� � r r r � � � r r

� Q� � r r r r � � � r

� Q� � r r r r r � � � �

� � [\ _ �
� [\ _ � r r r r r r

...
...

...
...

...
...

...� [\ _ � r r r r r r

Algorithms – p.42/56

We shall say that the constraint system

� 5; 6 7 ; 	 <;= � is an
instance of a Bit Vector Framework when:

H � � �� 	

for some finite set

�

and

when each right hand side

7 ; is of the form� 52u�� � � �; 	 � �; for sets

� �; O �

and variable 52u�� J �

.

Clearly the classical Data Flow Analyses of Section produce

constraint systems of this form (possibly after expansion of

a composite constraint 5; 6 7 �; 9 . . . 97 ��; into the individual

constraints 52; 67 �; (. . . (52; 6 7 ��;).

Algorithms – p.43/56

Consider a depth-first spanning forest

�

and a reverse
postorder rPostorder constructed for the graph

s�t with
handle

wt .

The loop connectedness parameter

� � s�t (�	 @ �

is defined
as the largest number of back edges found on any
cycle-free path of

s�t .

The back edges are exactly those edges for which the target

of the edge does not have an rPostorder number that is strictly

larger than that of the source.

Algorithms – p.44/56

Let us say that the RR algorithm has iterated p @ �
times if

the loop of step 1 has been executed once and the
while-loop of step 2 has been executed p r � times. We then
have the following result:

Under the assumptions stated above, the RR algorithm halts

after at most

� � s�t (�	 a !

iterations. It therefore performs at

most

` � � � � s�t (�	 a � 	 . ?	

assignments.

Algorithms – p.45/56

For While programs the loop connectedness parameter is
independent of the choice of depth first spanning forest,
and hence of the choice of the reverse postorder recorded
in rPostorder, and that it equals the maximal nesting depth

�

of while-loops.

It follows that this result gives an overall complexity of` � � �a � 	 . �	

where

�

is the number of elementary blocks.

We would normally expect this bound to be significantly

smaller than the

` � � � 	
obtained earlier.

Algorithms – p.46/56

A graph is strongly connected if every node is
reachable from every other node.

The strong components of a graph are its maximal
strongly connected subgraphs.

The strong components partition the nodes in the
graph.

The interconnections between components can be
represented by a reduced graph: each strong
component is represented by a node in the reduced
graph and there is an edge from one strong component
to another if there is an edge in the original graph from
some node in the first strong component to a node in
the second strong component and provided that the two
strong components are not the same.

Algorithms – p.47/56

The reduced graph is always a DAG, i.e. a directed, acyclic
graph.

As a consequence, the strong components can be linearly
ordered in topological order:

�� � B �� � (where

�� � and�� � are nodes in the reduced graph) whenever there is an
edge from

�� � to

�� � .

Such a topological order can be obtained by constructing a

reverse postorder for the reduced graph.

Algorithms – p.48/56

, �
, �

, �

, �
, �

, }
}

}
}

(a)

'-, � (, �*

', �*

', � (, �*

', *

} }

� �

(b)

Algorithms – p.49/56

There are two possible topological orderings of the strong
components. One is

', �* ('-, � (, �* (', � (, �* (', * and the
other is

', �* ('-, � (, �* ('-, � (, �* (', * .

In this example each strong component was an outermost

loop. This holds in general for both forward and backward

flow graphs for programs in the While language.

Algorithms – p.50/56

For each constraint we need to record both the strong
component it occurs in and its number in the local reverse
postorder for that strong component.

We shall do so by means of a numbering srPostorder that to
each constraint 5 6 7

assigns a pair (scc,rp) consisting of the
number scc of the strong component and the number rp of
its reverse postorder numbering inside that strong
component.

Algorithms – p.51/56

INPUT: A graph partitioned into strong components

OUTPUT: srPostorder

METHOD: scc := 1;

for each scc in topological order do

rp := 1;

for each 5 67
in the strong component scc

in local reverse postorder do

srPostorder[5 6 7

] := (scc,rp);

rp := rp + 1

scc := scc + 1;
Algorithms – p.52/56

Conceptually, we now modify step 2 of the worklist algorithm

so that the iteration amounts to three levels of iteration; the

outermost level deals with the strong components one by

one; the intermediate level performs a number of passes

over the constraints in the current strong component; and

the inner level performs one pass in reverse postorder over

the appropriate constraints.

Algorithms – p.53/56

empty = (nil,

R

)

function insert(

� 5 67 	

,(W.c,W.p))

return (W.c,

� � � ' 5 6 7 * 	

)

function extract((W.c,W.p))

local variables: scc, W scc

if W.c = nil then

scc := � VXW '

fst(srPostorder[5 67
])

A � 5 6 7 	 J � �*

;

W scc :=

' � 5 6 7 	 J � � A
fst(srPostorder[5 67

]) � _� �* ;

W.c := sort srPostorder(W scc);

W.p := W.p

"

W scc;

return (head(W.c), (tail(W.c),W.p))

Algorithms – p.54/56

Consider the ordering

', �* ('-, � (, �* ('-, � (, �* ('-, * of the
strong components of the example.

The algorithm iterating through strong components
produces the walkthrough of the following slide when
solving the system.

Note that even on this small example the algorithm performs

slightly better than the others (ignoring the cost of maintain-

ing the worklist).

Algorithms – p.55/56

� � '-, � (. . . (, * R R R R R R

� � '-, � (. . . (, * � � r r r r r

�, � � '-, � (. . . (, * r � � � r r r r

� � '-, � (. . . (, * r r � � � r r r

�, � � '-, � (, � (, * r r r r r r

� � '-, � (, � (, * r r r r r r

�, � � '-, � (, * r r r � � � r r

� � '-, � (, � (, * r r r r � � � r

�, � � ', * r r r r r r

� � ', * r r r r r r

� � R r r r r r � � � �

Algorithms – p.56/56

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

