
Control Flow Analysis

Data Flow

Analysis

Control Flow

Analysis

Abstract

Interpretation

Type and Effect

Systems

Correctness

Efficiency

Control Flow Analysis – p.1/35

Control Flow Analysis

Flow information is essential for the specification of
Data Flow Analyses. In the case of the Monotone
Framework, flow information is represented by the flow
function

�

.

While language: flow information can be extracted
directly from the program text. Procedure calls are
performed by explictly mentioning the name of a
procedure.

Not so trivial for more general languages e.g imperative
languages with procedures as parameters, functional
languages or object-oriented languages.

In such cases, a special analysis is required: Control
Flow Analysis

Control Flow Analysis – p.2/35

let

�

= fn � � � �

;� = fn � � � � �
;	

= fn
 �
 � �
in

� � �
 � � � 	

The aim of Control Flow Analysis is:

For each function application, which functions may be applied

Control Flow Analysis – p.3/35

Overview

Control Flow Analysis

Abstract Domains and Specification

Contraint Generation

Constraint Solving Algorithm

Control and Data Flow Analysis

Context-Sensitive Analysis Concepts

Control Flow Analysis – p.4/35

� � ��� � expressions (or labelled terms)� � ���� � terms (or unlabelled expressions)

�� � � � �
�� � � � � � �

fn � � �� � � �! �
if �� then � else �! �

let � = � in �! � � op �!

� �
fn � � �
 ! �

fn � � � "
 #
 $

Control Flow Analysis – p.5/35

We will define a 0-CFA Analysis; the presentation requires
two components:

Abstract Domains

Specification of the Analysis

The result of a 0-CFA analysis is a pair

� %'&)(%'*
 where:%+&

is the abstract cache associating abstract values with
each labelled program point.% * is the abstract environment associating abstract
values with each variable.

Control Flow Analysis – p.6/35

%', � -/.10 2 � 3 � ���� �
 abstract values%'* � -�145 � .10� 6 - .0 2 abstract environments%& � 7 08 9 � � : 0 ; 6 -<.0 2 abstract caches

An abstract value

%', is a set of terms of the form

fn � � �=�
Control Flow Analysis – p.7/35

For the formulation of the 0-CFA analysis we shall write� %>& (%'*
 � � �
for when

� %&)(%'*
 is an acceptable Control Flow Analysis of the
expression �. Thus the relation “

� �” has functionality� �� � 7 08 9 � ? -�145 ? ��� �
 6 @
true(false

A

Goal:

If a sub-expression
� �

evaluates to a function (closure),
then the function must be “predicted” by

%& �B

Control Flow Analysis – p.8/35

CFA: Example

� �

fn � � �
 ! �

fn � � � "
 #
 $

C DFEHGI DFJG K C D E LGI DJ LG K C D E L LG I DJ L LG KMNOPQ
RS

T

fn S U S VWT

fn R U R X WYT

fn S U S VWT

fn S U S VWT

fn S U S VW Y
T

fn S U S VWT

fn R U R X WYT
fn S U S VWT
fn S U S VW YY

T
fn R U R XI fn S U S VWT
fn R U R XI fn S U S VWT
fn R U R XI fn S U S VWT
fn R U R XI fn S U S VWT

fn R U R XI fn S U S VWT

fn R U R XI fn S U S VWT

fn R U R XI fn S U S VW

Control Flow Analysis – p.9/35

Specification: Rules

� %& (% *
 � �[Z � � always

� %& (% *
 � �\Z � � iff % * � �
^] %+& �B

� %& (% *
 � �\Z �

if

� �`_� then

� �`a else
� �`b!
 �

iff

� %&)(%*
 � �\Z � �c_� d� %&)(%*
 � �\Z � �a d � %>&(%*
 � � Z � � b! d%+& �B
^] %+& �B
 d %+& �B !
^] %+& �B

� %& (% *
 � �\Z �
let � = � �a in

� �eb!
 �

iff
� %&)(%*
 � �\Z � �a d � %+&(%*
 � � Z � � b! d%>& �B
^] % * � �
 d %>& �B !
^] %>& �B

Control Flow Analysis – p.10/35

� %& (% *
 � �[Z � � �a op

� �cb!
 �

iff

� %& (%'*
 � �\Z � �a d � %>& (% *
 � � Z � � b!

� %& (% *
 � �\Z �

fn � � ��
 �

iff

@

fn � � �� A] %& �B
 d � %& (% *
 � �fZ ��

� %& (% *
 � �\Z � � �a � � b!
 �
iff

� %& (%'*
 � �\Z � �a d � %+& (% *
 � � Z � � b! d�g �

fn � � � �c_�
 � %+& �B
�%& �B !
^] %'* � �
 d%& �B �
^] %& �B

Control Flow Analysis – p.11/35

Constraint Generation

To implement the specification, we must generate a set of
constraints from a given program.

hji k k � i l l
is a set of

constraints and conditional constraints of the form

lhs

]

rhs@ � A]

rhs

m �
lhs

]
rhs

where rhs is of the form

& �B

or n � �
 , and lhs is of the form& �B
 (n � �
 , or

@ � A

, and all occurrences of

�

are of the form

fn � � �� .

Control Flow Analysis – p.12/35

Recall

� %& (% *
 � �[Z �

fn � � �=�
 �

iff

@

fn � � �� A] %& �B
 d � %& (% *
 � �\Z ��hoi k k �

fn � � ��
 � l l � @ @

fn � � �� A] & �B
 Aqp hi k k �� l l

� %& (% *
 � �\Z � � �a � � b!
 �

iff

� %+& (% *
 � � Z � �ea d � %& (% *
 � �\Z � �eb! d� g �
fn � � � �c_�
 � %& �B
� %>& �B !
^] % * � �
 d%>& �B �
^] %& �B

hji k k � � �a � �cb!
 � l l� hji k k � �a l l p hi k k � �cb! l lp @ @ � A] & �B
 � & �B !
^] n � �
 � � � �

fn � � � � _�
 � �� � � i Ap @ @ � A] & �B
 � & �B �
^] & �B
 � � � �

fn � � � �c_�
 � ���� � i A

Control Flow Analysis – p.13/35

hri k k � � l l � s
hji k k � � l l � @ n � �
^] & �B
 A

hji k k �

if

� �`_� then

� �`a else

� �`b!
 � l l � hi k k � �`_� l l p hji k k � �a l l p hji k k � �`b! l lp @ & �B
^] & �B
 Ap @ & �B !
^] & �B
 A

hji k k �

let � = � �a in

� � b!
 � l l � hji k k � �`a l l p hji k k � �`b! l lp @ & �B
^] n � �
 Aqp @ & �B !
^] & �B
 A

hji k k � � �a op

� �eb!
 � l l � hji k k � �ea l l p hji k k � �eb! l l

Control Flow Analysis – p.14/35

Contraint Generation: Example

hri k k � �

fn � � �
 ! �

fn � � � "
 #
 $ l l �hji k k �

fn � � �
 ! l l p hji k k �

fn � � � "
 # l lp @ @ � A] & � �
 � & �t
^] n � �
 � � � �
fn � � � �`_�
 � ���� � i Ap @ @ � A] & � �
 � & �u
^] & �v
 � � � �
fn � � � � _�
 � �� � � i A

hji k k �

fn � � �
 ! l l � @ @

fn � � � A] & � �
 A p hji k k � l l@ @

fn � � � A] & � �
 A p @ n �xw
] & � �
 A@ @
fn � � � A] & � �
 (n �xw
] & � �
 A

hri k k �

fn � � � "
 # l l � @ @
fn � � � " A] & �t
 A p hri k k � " l l@ @
fn � � � " A] & �t
 (n �xy
] & � �
 A

Control Flow Analysis – p.15/35

@ @ � A] & � �
 � & �t
^] n � �
 � � � �

fn � � � � _�
 � ���� � i A

� @

fn � � �] & � �
 � & �t
^] n �xw
 (
fn � � � "] & � �
 � & �t
] n �y
 A

@ @ � A] & � �
 � & �u
^] & �v
 � � � �
fn � � � �e_�
 � �� � � i A

� @

fn � � �] & � �
 � & � �
^] & �v
 (
fn � � � "] & � �
 � & � �
] & �v
 A

Control Flow Analysis – p.16/35

hri k k � �

fn � � �
 ! �

fn � � � "
 #
 $ l l �@

fn � � � A] & � �
 (n �xw
^] & � �
 (@

fn � � � " A] & �t
 (n �xy
^] & � �
 (@

fn � � � A] & � �
 � & �t
] n �w
 (@
fn � � � A] & � �
 � & � �
] & �v
 (@
fn � � � " A] & � �
 � & �t
^] n �xy
 (@
fn � � � " A] & � �
 � & � �
^] & �v
 A

Control Flow Analysis – p.17/35

Constraint Solving

To solve the constraints, we use a graph-based formulation.
The algorithm uses the following main data structures:

a worklist W, i.e. a list of nodes whose outgoing edges
should be traversed;

a data array D that for each node gives an element of- .0 2 i ; and

an edge array E that for each node gives a list of
constraints from which a list of the successor nodes can
be computed.

Control Flow Analysis – p.18/35

The graph will have nodes

& �B

and n � �
 for

B � : 0 ; i and� � .0� i . Associated with each node z we have a data field{ k}| l

that initially is given by:{ k | l � @ � � � @ � A] z
 � hji k k � i l l A
The graph will have edges for a subset of the constraints inhri k k � i l l

; each edge will be decorated with the constraint that
gives rise to it:

a constraint z] z! gives rise to an edge from z to z! ,
and

a constraint

@ � A] z � z] z! gives rise to an edge
from z to z! and an edge from z to z! .

Control Flow Analysis – p.19/35

INPUT:

hi k k � i l l

OUTPUT:

� %& (%'*

METHOD: Step 1: Initialisation
W := nil;

for ~ in Nodes do D[~] :=

s
;

for ~ in Nodes do E[~] := nil;

Control Flow Analysis – p.20/35

Step 2: Building the graph
for � � in hji k k � i l l

do

case � � of@ � A] z: add(z, @ � A
);z] z! : E[z] := cons(� �,E[z]);@ � A] z � z] z! :

E[z] := cons(� �,E[z]);

E[z] := cons(� �,E[z]);

Control Flow Analysis – p.21/35

Step 3: Iteration
while W

� � nil do~ := head(W); W := tail(W);

for � � in E[~] do

case � � ofz] z! : add(z! , D[z]);@ � A] z � z] z! :

if

� �
D[z] then add(z! , D[z]);

Control Flow Analysis – p.22/35

Step 4: Recording the solution
for

B

in

: 0 ; i do

%>& �B

:= D[

& �B

];

for � in .0� i do

%'* � �
 := D[n � �
];
USING: procedure add(~, �

) is

if � (�]

D[~])
then D[~] := D[~]p �

;

W := cons(~,W);

Control Flow Analysis – p.23/35

z D[z] E[z]

& � �
 s

[id �] & � �
 � & � �
] & �v

]& � �

id � [id �] & � �
 � & � �
] & �v

, id �] & � �
 � & �t
] n �xy

,

id �] & � �
 � & � �
] & �v

, id �] & � �
 � & �t
] n �xw

]& � �
 s

[id �] & � �
 � & � �
] & �v

]& �t

id � [id �] & � �
 � & �t
] n �xy

, id �] & � �
 � & �t
] n �xw

]& �v
 s

[]n �xw
 s

[n �w
] & � �

]n �xy
 s

[n �y
] & � �

]

Control Flow Analysis – p.24/35

[

& �t

,

& � �

] [n �xw

,

& � �

] [

& � �

,

& � �

] [

& �v

,

& � �

] [

& � �

] []s s

id � id � id � id �

id � id � id � id � id � id �s s s s s s

id � id � id � id � id � id �s s s
id � id � id �s

id � id � id � id � id �s s s s s s

Control Flow Analysis – p.25/35

Control Flow + Data Flow

Let Data be a set of abstract data values (i.e. abstract
properties of booleans and arithmetic constants)%', � - .0 2<� � 3 � ��� �p Data

abstract values

For each constant � � 7�� 4 � � we need an element

��� �

Data
Similarly, for each operator op

� � � we need a total function%'�|� - .0 2<� ? - .10 2� 6 - .0 2<�

Typically,

%'�| will have a definition of the form%', %'�| % ,! � @ ���� � � (�!
 � � � % , �

Data(�! � %,! �

Data

A

for some function
���� � Data ? Data

6 3 �

Data

Control Flow Analysis – p.26/35

Data � ���� � @

tt(ff(-(0(+ A

����� � � tt ��� � +%

+ is defined from�

+ tt ff - 0 +

tt

s s s s s
ff

s s s s s

-

s s
{-} {-} {-, 0, +}

0

s s
{-} {0} {+}

+

s s
{-, 0, +} {+} {+}

Control Flow Analysis – p.27/35

� %& (% *
 � �� �

fn � � �q�
 �

iff

@

fn � � �q� A] %& �B
 d � %& (% *
 � �� ��

� %& (% *
 � �� � � �a X � � b¢¡
 �

iff

� %>& (%'*
 � �� � �a X d � %>& (% *
 � � � � �£b¢¡ d� g �

fn � � � � _�
 � %& �B X
�%& �B ¡
^] % * � �
 d %& �B �
^] %>& �B

� %& (% *
 � �� �

if

� � _� then

� �a X else
� � b¢¡
 �

iff

� %>& (%'*
 � �� � �1_� d� �¢¤¥¦ § � %'& �B �
 � � � %&)(%*
 � �� � �a X d %& �B X
^] %'& �B

 d� �©¨^ª «­¬ § � %& �B �
 � � � %>& (% *
 � �� � � b¢¡ d %>& �B ¡
^] %>& �B

Control Flow Analysis – p.28/35

� %& (% *
 � �� �

fn � � �q�
 �

iff

@

fn � � �q� A] %& �B
 d � %& (% *
 � �� ��

� %& (% *
 � �� � � �a X � � b¢¡
 �

iff

� %>& (%'*
 � �� � �a X d � %>& (% *
 � � � � �£b¢¡ d� g �

fn � � � � _�
 � %& �B X
�%& �B ¡
^] % * � �
 d %& �B �
^] %>& �B

� %& (% *
 � �� �

if

� � _� then

� �a X else
� � b¢¡
 �

iff

� %>& (%'*
 � �� � �1_� d� �¢¤¥¦ § � %'& �B �
 � � � %&)(%*
 � �� � �a X d %& �B X
^] %'& �B

 d� �©¨^ª «­¬ § � %& �B �
 � � � %>& (% *
 � �� � � b¢¡ d %>& �B ¡
^] %>& �B

Control Flow Analysis – p.28/35

� %& (% *
 � �� � � iff @ �¯® A] %>& �B

� %& (% *
 � �� � � iff % * � �
^] %>& �B

� %& (% *
 � �� �

let � = � �a X in

� �£b°¡
 �
iff

� %'& (%'*
 � �� � �a X d � %'& (% *
 � � � � � b°¡ d%& �B X
^] % * � �
 d %& �B ¡
^] %>& �B

� %& (% *
 � �� � � �a X op

� �£b°¡
 �
iff

� %+& (%'*
 � �� � �a X d � %+& (% *
 � � � � � b¢¡ d%& �B X
 %'�| %>& �B ¡
^] %& �B

Control Flow Analysis – p.29/35

� %& (% *
 � �� � � iff @ �¯® A] %>& �B

� %& (% *
 � �� � � iff % * � �
^] %>& �B

� %& (% *
 � �� �

let � = � �a X in

� �£b°¡
 �
iff

� %'& (%'*
 � �� � �a X d � %'& (% *
 � � � � � b°¡ d%& �B X
^] % * � �
 d %& �B ¡
^] %>& �B

� %& (% *
 � �� � � �a X op

� �£b°¡
 �
iff

� %+& (%'*
 � �� � �a X d � %+& (% *
 � � � � � b¢¡ d%& �B X
 %'�| %>& �B ¡
^] %& �B

Control Flow Analysis – p.29/35

� %& (% *
 � �� � � iff @ �¯® A] %>& �B

� %& (% *
 � �� � � iff % * � �
^] %>& �B

� %& (% *
 � �� �

let � = � �a X in

� �£b°¡
 �
iff

� %'& (%'*
 � �� � �a X d � %'& (% *
 � � � � � b°¡ d%& �B X
^] % * � �
 d %& �B ¡
^] %>& �B

� %& (% *
 � �� � � �a X op

� �£b°¡
 �
iff

� %+& (%'*
 � �� � �a X d � %+& (% *
 � � � � � b¢¡ d%& �B X
 %'�| %>& �B ¡
^] %& �B

Control Flow Analysis – p.29/35

Consider the expression:

let

�

=

�

fn � � �

if

� � ± u !
 "

then

�
fn � � � #
 $

else

�

fn
 � �v ²
 �
 ³
 ´
in

� � � � �
 ! u "
 #
 $
A pure 0-CFA analysis will not be able to discover that the
else-branch of the conditional will never be executed.

When we combine the analysis with a Detection of Signs

Analysis then the analysis can determine that only fn � � � #

is a possible abstraction at label 12.

Control Flow Analysis – p.30/35

The Control Flow Analyses presented so far are imprecise
in that they cannot distinguish the various instances of
function calls from one another. In the terminology of Data
Flow Analysis the 0-CFA analysis is context-insensitive and
in the terminology of Control Flow Analysis it is
monovariant.

To get a more precise analysis it is useful to introduce a

mechanism that distinguishes different dynamic instances

of variables and labels from one another. This results in a

context-sensitive analysis and in the terminology of Control

Flow Analysis the term polyvariant is used.

Control Flow Analysis – p.31/35

Consider the expression:�

let

�

=

�

fn � � �
 !
in

� � � " � #
 $ �

fn � � � ²
 �
 ³
 ´

The least 0-CFA analysis is given by

� %>& � µ (%'* � µ
 :

Control Flow Analysis – p.32/35

%&·¶ ¸ � �
 � @

fn � � � X (fn � � � ¹ A %&·¶ ¸ � �
 � @
fn � � � X A%&·¶ ¸ � �
 � @

fn � � � X A %&·¶ ¸ �t
 � @
fn � � � X A%&º¶ ¸ �v
 � @

fn � � � X (fn � � � ¹ A %&º¶ ¸ �»
 � @
fn � � � ¹ A%&·¶ ¸ �¼
 � @

fn � � � ¹ A%&·¶ ¸ �½
 � @

fn � � � X (fn � � � ¹ A%&º¶ ¸ �¾
 � @

fn � � � X (fn � � � ¹ A

%'*¶ ¸ �À¿
 � @

fn � � � X A%'*¶ ¸ �xw
 � @

fn � � � X (fn � � � ¹ A%'*¶ ¸ �xy
 � @
fn � � � ¹ A

Control Flow Analysis – p.33/35

Expand the program into

let

� =

�

fn � � �

in let

�! =

�

fn � ! � � !

in

� � �!
 �
fn � � �

and then analyse the expanded expression: the 0-CFA anal-

ysis is now able to deduce that � can only be bound to

fn � ! � � ! and that � ! can only be bound to fn � � � so

the overall expression will evaluate to fn � � � only.

Control Flow Analysis – p.34/35

A more satisfactory solution to the problem is to extend the
analysis with context information allowing it to distinguish
between the various instances of variables and program
points and still analyse the original expression. Examples of
such analyses include

Á

-CFA analyses, uniform

Á
-CFA

analyses, polynomial

Á

-CFA analyses (mainly of interest forÁ± u

) and the Cartesian Product Algorithm.

Control Flow Analysis – p.35/35

	Control Flow Analysis
	
	Overview
	
	
	
	
	CFA: Example
	Specification: Rules
	
	Constraint Generation
	
	
	Contraint Generation: Example
	
	
	Constraint Solving
	
	
	
	
	
	
	
	Control Flow + Data Flow
	
	
	
	
	
	
	
	
	

