We use the following syntactic categories:

a € AExp arithmetic expressions
b € BExp boolean expressions
S € Stmt statements
We assume some countable set of variables is given; numerals

and labels will not be further defined and neither will the

operators:
x,y € Var variables
n € Num numerals

¢ € Lab labels

op, € Op, arithmetic operators
op, € Op, boolean operators

op, € Op, relational operators

The syntax of the language is given by the following abstract

syntax:
a == z|n|a op, as
b == true | false |not b| by op, b2 | a1 op, as
S == [r:=a]’|[skip]’ | S1;52 |

if [b]¢ then S; else Sz | while [b]* do S

Initial and final labels. When presenting examples of Data
Flow Analyses we will use a number of operations on

programs and labels. The first of these is
init : Stmt — Lab

which returns the initial label of a statement:

init([z :=a]®) = ¢
init([skip]?) = ¢
init(S1; S2) = init(St)
init(if [b]° then S; else Sy) = ¢
init(while [b]° do S) = ¢

We will also need a function
final : Stmt — P(Lab)

which returns the set of final labels in a statement; whereas a
sequence of statements has a single entry, it may have
multiple exits (as for example in the conditional):
final([z := a]*) = {¢}
final([skip]?) = {¢}
ﬁnal(Sl, 2) = ﬁnal(Sz)
final(if [b]° then S; else Sy) = final(Sy) U final(Ss)
final(while [b] do S) = {/}
Note that the while-loop terminates immediately after the

test has evaluated to false.

Blocks. To access the statements or test associated with a

label in a program we use the function
blocks : Stmt — P(Blocks)

where Blocks is the set of statements, or elementary blocks,
of the form [z:=a]’ or [skip]® as well as the set of tests of the
form [b]¢.
blocks([x := al*
blocks([skip]*
blocks(S1; S2
blocks(if [b]* then S; else Ss

= {fx=al}

= {[skip]’}

= blocks(S1) U blocks(Ss)

= {[b]*} U blocks(S})
Ublocks(.S2)

blocks(while [b]® do S) = {[b]°} U blocks(S)

)
)
)
)

Then the set of labels occurring in a program is given by
labels : Stmt — P(Lab)

where
labels(S) = {¢ | [B]* € blocks(S)}
Clearly init(S) € labels(S) and final(S) C labels(S).

Flows and reverse flows.

flow : Stmt — P(Lab x Lab)
which maps statements to sets of flows:
flow([z := a]®) = 0
flow([skip]®) = 0
flow(S1;S2) = flow(Sy) U flow(S2) U
{(¢, init(S2)) | £ € final(S1)}
flow(if [b]* then S else So) = flow(S;) U flow(Sz) U
{(¢, init(S1)), (¢, init(S2))}
flow(while [b]* do S) = flow(S) U{(4, init(S))}
U{(¢,2) | ¢ € final(S)}

Consider the following program, power, computing the x-th

power of the number stored in y:
[z:=1]};while [x>0]? do ([z:=z*y]?; [x:=x-1]%)

We have init(power) = 1, final(power) = {2} and
labels(power) = {1, 2, 3,4}. The function flow produces the

following set

{(1,2),(2,3),(3,4),(4,2)}

9
[z:=1]"
vy
[x>0]? | no
yes
2:=2#y]
[x:=x-1]*

10

The function flow is used in the formulation of forward
analyses. Clearly init(.S) is the (unique) entry node for the
flow graph with nodes labels(S) and edges flow(S). Also

labels(S) = {init(S)}u{£ | (¢,£) € low(S)Yu{l' | (£,£") € flow(S)

and for composite statements (meaning those not simply of
the form [B]*) the equation remains true when removing the

{init(S)} component.

I

11

In order to formulate backward analyses we require a function

that computes reverse flows:

flow™ : Stmt — P(Lab x Lab)
AowR(S) = {(£,£) | (¢,¢) € flow(S)}

For the power program, flow™ produces
{(2,1),(2,4),(3,2),(4,3)}

In case final(S) contains just one element that will be the
unique entry node for the flow graph with nodes labels(S)
and edges flow™(S). Also

labels(S) = final(S)U {£]| (£, € flow™(S)}U
{0 (¢,2) € flow™(S)}

12

We will use the notation S, to represent the program that we
are analysing (the “top-level” statement), Lab, to represent
the labels (labels(S)) appearing in Sy, Var, to represent the
variables (FV(S,)) appearing in S,, Blocks, to represent the
elementary blocks (blocks(S,)) occurring in Sy, and AExp,
to represent the set of non-trivial arithmetic subexpressions
in S,; an expression is trivial if it is a single variable or
constant. We will also write AExp(a) and AExp(b) to refer
to the set of non-trivial arithmetic subexpressions of a given
arithmetic, respectively boolean, expression.

13

Program S, has isolated entries if:
V¢ € Lab : (£,init(Sy)) ¢ flow(Sy)

This is the case whenever S, does not start with a
while-loop. Similarly, we shall frequently assume that the

program S, has isolated exits; this means that:

V¢y € final(S,) Ve € Lab : (¢1,42) ¢ flow(S,)

14

A statement, S, is label consistent if and only if:
[B1]%, [Bz]¢ € blocks(S) implies By = B

Clearly, if all blocks in S are uniquely labelled (meaning that
each label occurs only once), then S is label consistent. When
S is label consistent the clause “where [B]¢ € blocks(S)” is
unambiguous in defining a partial function from labels to
elementary blocks; we shall then say that £ labels the block B.

15

Available Expressions Analysis
The Available Expressions Analysis will determine:

For each program point, which expressions must have
already been computed, and not later modified, on

all paths to the program point.

This information can be used to avoid the re-computation of
an expression. For clarity, we will concentrate on arithmetic

expressions.
[x:=a+b]'; [y:=a*b]?; while [y>a+b]® do ([a:=a+1]*;[x:=a+b]")

It should be clear that the expression a+b is available every
time execution reaches the test (label 3) in the loop; as a

consequence, the expression need not be recomputed.

16

killag : Blocks, — P(AExp,)

genag : Blocks, — P(AExp,)

AEcntry, AE st : Lab, — P(AExp,)

17

killag([z == a]*) = {a’ € AExp, |z € FV(d')}
killzg([skip]®) = 0
killng([B]") = 0
genpe(lz :=a]’) = {d' € AExp(a) |z ¢ FV(a')}
genpg([skip]’) = 0
geme([b]) = AExp(b)

0, if £ = init(S,)
AEentry(E) = { (

({AEcit(¢') | (¢,£€) € low(S,)}, otherwise
AEcsit(£) = (AEentry(£)\killae(B¥)) U genpg(B*)
where B € blocks(S,)

18

Largest solution. The analysis is a forward analysis and, as
we shall see, we are interested in the largest sets satisfying

the equation for AE .

[z:=x+y]£;whi1e [true]el do [Skip]eu

AEentry (6) = 0

AEentry(gl) = AEewit(K) N AEe:cit(E”)
AEentry(KH) = AEewit(gl)
AEea:it(e) - AEentry(g)U{X+Y}
AEemit(zl) = AEentry(gl)
AEewit(Kﬂ) - AEentry(gﬂ)
19
{
[]E
i"
[)¢ —2—
yes
[--]¢
]

After some simplification, we find that:

AEentry (fl) = {X+Y} N AEentry (gl)

20

[x:=a+b]!; [y:=a*b]?; while [y>a+b]® do ([a:=a+1]*;[x:=a+b]®)

l killag () genpg(£)

1 0 {a+b}

2 0 {a*b}

3 0 {a+b}

4 | {a+b, a*b, a+1} 0

5 0 {a+b}
21

[x:=a+b]'; [y:=a*b]?; while [y>a+b]® do ([a:=a+1]*;[x:=a+b]’)

AEcntry(1) = 0

AEcniry(2) = AEg(1)

AEcntry(3) = AEeit(2) N AEe(5)

AEcntry(4) = AEi(3)

AEcniry(5) = AEe:(4)
AEcit(1) = AEentry(1) U {a+b}
AEc;it(2) = AEcnuy(2) U {axb}
AEeit(3) = AEomry(3)U {a+b}
AEcsit(4) = AEenty(4)\{atb,a*b,a+1}
AEeit(5) = AEonry(5)U {a+b}

22

0 | AEcntry(£) | AEcgit(£)
1 0 {a+b}

2| {at+b} | {at+b, a*b}
3| {at+b} {a+b}

4| {at+b} 0

5 0 {a+b}

Note that, even though a is redefined in the loop, the
expression a+b is re-evaluated in the loop and so it is always
available on entry to the loop. On the other hand, a*b is
available on the first entry to the loop but is killed before the
next iteration.

23

Reaching Definitions Analysis. This analysis is analogous
to the previous one except that we are interested in:

For each program point, which assignments may have
been made and not overwritten, when program

execution reaches this point along some path.

A main application of Reaching Definitions Analysis is in the
construction of direct links between blocks that produce

values and blocks that use them.
[x:=5]!; [y:=1]%;while [x>1]3 do ([y:=x*y]}; [x:=x-1]°)

All of the assignments reach the entry of 4 (the assignments
labelled 1 and 2 reach there on the first iteration); only the
assignments labelled 1, 4 and 5 reach the entry of 5.

24

killrp : Blocks, — P(Var, x Lab,)

gengp : Blocks, — P(Var, x Lab,)

RD ¢ntrys RDegst : Lab, — P(Var, x Lab,)

25

killp([z == a]®) = {(z,?7)}U
{(z,¢) | BY is an assignment to x in S}

killgp ([skip]*
killo ([b]°

))

) 0
gengp ([z —a]e) = {(z, 0}

)

)

0
=0

gengp ([b]é

26

RDors () = {{() | = € FV(S,)}, if £ = init(S,)

U{RDe¢zit(¢') | (¢, €) € flow(S,)}, otherwise
RDe:m't (6) — (RDentry()\ijRD(E
where B! € blocks(Sx

) U gengp (B*)

)
)

27

Smallest solution. Similar to the previous example, this is
a forward analysis but, as we shall see, we are interested in
the smallest sets satisfying the equation for RD ¢y -

[z:=x+y]% while [true]el do [Skip]eu

RD entry 0 = {x7,y7), (="}
RDentry (¢') = RDegit (£) URD et (€7)
RDentry (fl/) - RDea:it (fl)
RDesit(£) = (RDemiry(£) \ {(z, 7)) U{(2,0)}
RD ¢zt (Kl) == RDentry (fl)
esm,t (E”) - RDentry (E”)
RDentry (€) = {(x,7), (v, 7), (2,£)} URDeptry (£)

28

Sometimes, when the Reaching Definitions Analysis is
presented in the literature, one has RDcptpy (init(Sy)) = 0
rather than RD ¢y (init(Sy)) = {(,?) | x € FV(S,)}. This is
correct only for programs that always assign variables before
their first use; incorrect optimisations may result if this is not
the case. The advantage of our formulation is that it is

always semantically sound.

29

[x:=5]1; [y:=1]2;while [x>1]3 do ([y:=x*y]4; [x:=x—1]5)

14 killrp (£) gengp (¢)
1 {(x,7),(x1),(x5)}| {(1)}
2| {57, (7,2, (7,0} | {(72)}
3 0 0
4
5)

30

[x:=5]1; [y:=1]2;while [x>1]3 do ([y:=x*y]4; [x:=x—1]5)

RDentry(1) = {(x,7),(v,7)}

RDentry(2) = RDegit(1)

RDentry(3) RD ezt (2) U RD it (5)

RDentry(4) = RDegit(3)

RDentry(5) = RDegit(4)

RDegit(1) = (RDentry(D\{(x,7),(x,1), (x,5)}) U{(x,1)
RDeit(2) = (RDentry(2)\{(y,7),(v,2), (v,4)}) U{(y,
RD¢sit(3) = RDentry(3)

RD it (4) (RDentry (O\{(v,7), (v,2), (v, 4)}) U{(y,4)}
RDesit(5) = (RDentry(5)\{(x,7), (x,1),(x,5)}) U{(x,5)
31

14 RDentry (£) RD ¢zt (€)

1 {(=7),y, 7} {(v,7), (x, 1)}

2 {(v,?), (x,1)} {(x,1),(y,2)}
31{(x1),(v,2),(v,4),(*,5)} | {(x,1),(v,2), (v,4), (x,5)}
41{(x,1),(y,2),(v,4),(=5)} | {(1),(y,4),(x,5)}

51 {(x1),(y,4),(x,5)} {(v,4), (x,5)}

32

Very Busy Expressions Analysis. An expression is very
busy at the exit from a label if, no matter what path is taken
from the label, the expression must always be used before any
of the variables occurring in it are redefined. The aim of the
Very Busy Expressions Analysis is to determine:

For each program point, which expressions must be

very busy at the exit from the point.

A possible optimisation based on this information is to
evaluate the expression at the block and store its value for
later use; this optimisation is sometimes called hoisting the

expression.

if [a>b]! then ([x:=b-a]?; [y:=a-b]®) else ([y:=b-a]*; [x:=a-b]’)

33

killyg : Blocks, — P(AExp,)

genyg : Blocks, — P(AExp,)

VBentry, VBegit : Lab, — P(AExp,)

The analysis is a backward analysis and we are interested in

the largest sets satisfying the equation for VB y;;.

34

kilyg([x := a]®) = {a' € AExp, |z € FV(d')}
killg([skip]®) = 0
killyg([b]Y) = 0
genyg([x := a]e) = AExp(a)
genyg([skip]’) = 0
genyg([b]Y) = AExp(b)

0,if £ € final(S,)
VBexit(E) =
N{VBentry (£') | (¢,£) € flow"(S,)}, otherwis
VBentry () = (VBegit(£)\killvg(B*)) U genyg(B*)
where B* € blocks(S,)

&

35

if [a>b]! then ([x:=b-a]?; [y:=a-b]®) else ([y:=b-a]*; [x:=a-b]’)

¢ | killyg (¢) | genyg({)
1 0 0

2 0 {b-a}
3 0 {a-b}
4 0 {b-a}
5 0 {a-b}

36

if [a>b]! then ([x:=b-a)?; [y:=a-b]®) else ([y:=b-a]*; [x:=a-b]°)

VBentry(1) = VBeit(1)
VBentry(2) = VBegit(2) U {b-al}
VBaniry(3) — {a-b)
VBentry(4) = VBegis(4) U {b-a}
VBenry(5) = {a-b}
VBeit(1) = VBentry(2) N VBeniry(4)
VBesit(2) = VBentry(3)
VBeit(3) = 0
VBesit(4) = VBentry(5)
VBeit(5) = 0
37

€| VBentry(€) | VBegit(€)

1| {a-b,b-a} | {a-b,b-a}

2 | {a-b,b-a} {a-b}

3| {a-b} 0

4 | {a-b,b-a} {a-b}

5| {a-b} 0

38

Live Variables Analysis. A variable is live at the exit from
a label if there exists a path from the label to a use of the
variable that does not re-define the variable. The Live

Variables Analysis will determine:

For each program point, which variables may be live
at the exit from the point.

This analysis might be used as the basis for Dead Code
Elimination. If the variable is not live at the exit from a label
then, if the elementary block is an assignment to the variable,
the elementary block can be eliminated.

=2 y = s =1
(if [y>x]* then [z:=y]° else ;[z:=y*y]%); [x:=2]"

39

killy : Blocks, — P(Var,)

gen,, : Blocks, — P(Var,)

LV it LV entry : Lab, — P(Var,)

The analysis is a backward analysis and we are interested in

the smallest sets satisfying the equation for LV ¢z .

40

killyy([z := a]%)
killyy ([skip]‘)
Killpy ([b]%)
genyy([r = a E)
geny ([skip]®)

)

genyy ([B]°

]
]E

Lvem't (f) = {

0,if £ € final(S,)
U{WV entry (¢) | (€,£) € flow™(S,)}, otherwise

WVentry(€) = (LVezie(£)\killy (B*)) U genyy, (B*)
where B¢ € blocks(S,)

41

=2y =% =1

(if [y>x]* then [z:=y]° else ;[z:=y*y]%); [x:=2]"

¢ | killiy(2) | genyy(£)
1| {x} 0

21 {y} 0

3| {x} 0

4 0 {x,y}
50 {z} {y}

6| {z} {y}

7 {x {z}

42

~— N N =

AN N N N N N N

43

)

~

-~

£

L

2

D)
e o e o e e
(D LTS L Yo S S &
~— ~— ~— ~—~ ~—~—~ ~~—
S S S > S D
N T s T N
e~ T T - T - S
£ &£ &£ &£ &g =g
S T N S B
22332333 s

AN AN AN AN AN AN /N

N N N N N N N

44

N O Ot R W N S

LV entry (f) LV exit (E)
0 0
0 {y}

{v}
{x,v}
{v}
{v}
{z}

{=,y}
{v}
{z}
{z}

0

Some authors assume that the variables of interest are output
at the end of the program; in that case LV (7) should be
{x,y,2} which means that LV ¢psry (7), LV it (5) and LV ¢zt (6)
should all be {y,z}.

45

Derived Data Flow Information.

It is often convenient to directly link labels of statements that
produce values to the labels of statements that use them.
Links that, for each use of a variable, associate all
assignments that reach that use are called Use-Definition
chains or ud-chains. Links that, for each assignment,
associate all uses are called Definition-Use chains or
du-chains.

46

Definition clear paths:

clear(z,0,0') = 3ly,--- Ly, :
lL=OANU,=0)N(n>0)A
(Vie{l,---,n—1}: (4;,£i+1) € flow(Sy)) A
(Vie{1,---,n— 1} : =def{z, £;)) N use(z, £,)

use(z, £) = (3B : [B]* € blocks(S,) Az € genyy ([B]Y))

def(z,0) = (3B : [B]* € blocks(S,) A x € killy([B]%))

47

ud, du : Var, x Lab, — P(Lab,)

ud(z, ') = {€|deflxz,l) AN3L": (£,£") € Aow(S,)
Aclear(z, 0" 0')}
U {?] clear(z, init(S,),)}
([(0| deflz, O)A
307 . (6,07 € flow(S,) A clear(x, 2", ')},
04 7
\ {l'| clear(x, init(S,),¢)},if £ = 7

du(z,l) =

It turns out that:

du(z,) = {¢' | £ € ud(z, ')}

48

x]? then [z:=0]* else [z:=x]°);

[x:=0]1; [x:=3]?%; (if [z

[y :=x]% [x:=y+2]"

~~
~ 0
N o =2 = -~
— <t
—
~
> = =S = O
—
~ ~
& (a\ NN =
- — =~
™ 0 O I~

ud(z, £)

49

{7}
{7}

{3}

0

=

{7}

{3,5,6}

=

du(z, £)

2

50

One application of ud- and du-chains is for Dead Code
Elimination; for the program on the previous slide we may
e.g. remove the block labelled 1 because there will be no use
of the value assigned to x before it is reassigned in the next
block. Another application is in Code Motion; in the example
program the block labelled 6 can be moved to just in front of
the conditional because it only uses variables assigned in
earlier blocks and the conditional does not use the variable

assigned in block 6.

51

Constructive definitions. In order to define ud-chains we
can use RD¢ptry, which records the assignments reaching a
block and define

UD : Var, x Lab, — P(Lab,)

UD(z,£) = { {¢ | (x,0') € RDepiry ()} if z € genyy (BY)

1] otherwise

52

Monotone Frameworks. Despite the differences between
the analyses we have studied there are sufficient similarities
to make it plausible that there might be an underlying
framework. The advantages that accrue from identifying such
a framework include the possibility of designing generic
algorithms for solving the data flow equations.

53

Each of the four classical analyses considers equations for a

label consistent program S, and they take the form:

L,ifl e E
Analysis,({) =
LI{Analysis,(¢') | (¢,£) € F},otherwise
Analysis,(¢) = fi(Analysis,({))
e | |isNor{ (and Ll is U or N),
F is either flow(S,) or flow™(S,),

E is {init(S,)} or final(S,),

¢ specifies the initial or final analysis information, and

f¢ is the transfer function associated with
B* ¢ blocks(S,,).

54

e The forward analyses have F' to be flow(S,) and then
Analysis, concerns entry conditions and Analysis,
concerns exit conditions; also the equation system

presupposes that S, has isolated entries.

e The backward analyses have F to be flow™(S,) and then
Analysis, concerns exit conditions and Analysis,
concerns entry conditions; also the equation system

presupposes that S, has isolated exits.

55

e When | | is [we require the greatest sets that solve the
equations and we are able to detect properties satisfied
by all paths of execution reaching (or leaving) the entry
(or exit) of a label; these analyses are often called must

analyses.

e When | | is | we require the least sets that solve the
equations and we are able to detect properties satisfied
by at least one execution path to (or from) the entry (or
exit) of a label; these analyses are often called may

analyses.

56

It is occasionally awkward to have to assume that forward
analyses have isolated entries and that backward analyses
have isolated exits. This motivates reformulating the above
equations to be of the form:

Analysis,() = | [{Analysis,(¢) | (¢,¢) € F} U v

where 1%, = ‘ if £
E
1L ifl¢E

Analysis,(¢) = fi(Analysis,())

where | satisfies [LI L = (hence L is not really there).

57

The view that we take here is that a program is a transition
system; the nodes represent blocks and each block has a
transfer function associated with it that specifies how the
block acts on the “input” state. (Note that for forward
analyses, the input state is the entry state, and for backward

analyses, it is the exit state.)

58

A Monotone Framework consists of:

e a complete lattice, L, that satisfies the Ascending Chain
Condition, and we write | | for the least upper bound

operator; and

e a set F of monotone functions from L to L that contains
the identity function and that is closed under function

composition.

A Distributive Framework is a Monotone Framework where
additionally all functions f in F are required to be
distributive:

fliUlz) = f(l) U f(la)

59

An instance, Analysis, of a Monotone (or Distributive)
Framework to consists of:

e the complete lattice, L, of the framework;
e the space of functions, F, of the framework;
e a finite flow, F, that typically is low(S,) or flow™(S,);

e a finite set of so-called extremal labels, F, that typically is
{init(S,)} or final(S,);

e an erxtremal value, t € L, for the extremal labels; and

e a mapping, f., from the labels Lab, of F' to transfer

functions in F.

60

An instance gives rise to a set of equations, Analysis™, of the

form considered earlier:
Analysis,({) = U{Analysis,(é') | (¢,¢0) € FYu.l

L if¢fe F

where 15 =
1L ifl¢FE

Analysis,(¢) = fi(Analysis,(¢))

61

It also gives rise to a set of constraints, Analysis=, defined by:

Analysis,(¢) 2 | |[{Analysis,(¢') | (¢,€) € F} U5

where £, = ‘ if £
E
1 if/ §§ E

Analysis,(¢) = fi(Analysis,(¢))

62

Available Reaching Very Busy Live
Expressions Definitions Expressions Variables
P(AExp,) P(Var, x Lab,) P(AExp,) ‘P(Var,)

2 C 2 C
N U N U
0 {(z,?) [z € FV(Sx)} 0 0
{init(S«)} {init(S«)} final(Sy) final(Sy)
fow(Sy) Aow(Sy) Aowlt(S,) Aowlt(S,)
{f: L= L|3lklg: f() =\ k) Ulg}
fe(l) = (I\ kill([B]%)) U gen([B]%) where [B]¢ € blocks(S4)

63

Lemma: Each of the four classical data flow analyses is a

Monotone Framework as well as a Distributive Framework.

It is worth pointing out that in order to get this result we
have made the frameworks dependent upon the actual
program — this is needed to enforce that the Ascending Chain
Condition is fulfilled.

64

A Non-distributive Example. The Constant Propagation

Analysis will determine:

For each program point, whether or not a variable
has a constant value whenever execution reaches that

point.

Such information can be used as the basis for an optimisation
known as Constant Folding: all uses of the variable may be

replaced by the constant value.

65

Statecp = ((Var, — Z"),C, U, M, L, Az.T)

where Var, is the set of variables appearing in the program
and ZT = Z U {T} is partially ordered as follows:

V2eZT :2C T

Vzi1,20 € Z : (21 C 29) & (21 = 22)

66

To capture the case where no information is available we
extend Var, — Z ' with a least element L, written
(Var, — Z"), . The partial ordering C on

Statecp = (Var, — Z"), is defined by

Vo€ (Var, = Z"),: LLCg&
V81,82€Var*—>ZT: 5’1 EE’Q iff Va:&l(a:) E&Q(l’)
and the binary least upper bound operation is then:

Voe(Var, - Z"),: cUl=6=1U¢

~ ~

Vo1,09 € Var, — Z': Vz: (31 L 32)(33) = 0'1(:13) L 0‘2(:6)

67

Acp : AExp — (Statecp — Z)

R L ife=1
Acplz]oe = {

o(x) otherwise

R 1 ifg =1
Acpn]e = ‘
n otherwise
Acplar op, a2]é = Acp[ai]o op, Acplaz]c

The operations on Z are lifted to Z| = Z U {_L, T} by taking
21 Op, 22 = 21 OP, 22 if 21,22 € Z (and where op, is the
corresponding arithmetic operation on Z), z; op, z2 = L if

z1 =L orzg=_1 and z; op, 22 = T otherwise.

68

Fcp = {f | f is a monotone function on Statecp}

o e n ifo=_1
[z :=a] : f7(0) { o[z — Acp[a]d] otherwise
skip]: fP(@) = &
[b]° fP@) = @

69

Constant Propagation is a forward analysis, so for the
program S, we take the flow, F', to be flow(S,), the extremal
labels, E, to be {init(S)}, the extremal value, ¢cp, to be
Azx.T.

Lemma Constant Propagation is a Monotone Framework

that is not a Distributive Framework.

To show that it is not a Distributive Framework consider the
transfer function f<F for [y:=x*x]* and let 5; and &2 be such
that 61(x) = 1 and 62(x) = —1. Then 61 Ll G2 maps x to T
and thus f<F (61 U G2) maps y to T and hence fails to record
that y has the constant value 1. However, both f<F(5;) and
f5P(52) map y to 1 and so does fF(51) U 5P (52).

70

The MFP solution.
INPUT: An instance of a Monotone Framework:

(L7f7F7E) L?f)
OUTPUT: MFP,, MFP,

METHOD: Step 1: Initialisation (of W and Analysis)
W := nil;
for all (£,¢') in F do
W := cons((£,£'),W);
for all £in F or E do
if £ € E then Analysis[{] := .
else Analysis[/] := Lp;

71

Step 2: Iteration (updating W and Analysis)
while W = nil do
¢ := fst(head(W)); ¢’ = snd(head(W));
W = tail(W);
if f¢(Analysis[£]) Z Analysis[¢] then
Analysis[¢'] := Analysis[¢'] U fy(Analysis[{]);
for all (¢/,¢") in F do W := cons((¢,¢"),W);
Step 3: Presenting the result (MFP, and MFP,)
forall £in F or E do
MFP,(£) := Analysis[/];
MFP,(¢) := fi(Analysis[{])

72

Lemma The worklist algorithm always terminates and it
computes the least (or MFP) solution to the instance of the

framework given as input.

Complexity. Assume that the flow F is represented in such
a way that all (¢, ") emanating from ¢ can be found in time
proportional to their number. Suppose that F and F' contain
at most b > 1 distinct labels, that F' contains at most e > b
pairs, and that L has finite height at most A > 1. Then steps
1 and 3 perform at most O(b + e) basic operations.
Concerning step 2 a pair is placed on the worklist at most
O(h) times, and each time it takes only a constant number of
basic steps to process it; this yields at most O(e - h) basic
operations for step 2. Since h > 1 and e > b this gives at

most O(e - h) basic operations for the algorithm.

73

Consider the Reaching Definitions Analysis and suppose that
there are at most v > 1 variables and b > 1 labels in the
program, S,, being analysed. Since L = P(Var, x Lab,), it
follows that h < v - b and thus we have an O(v - b) upper
bound on the number of basic operations.

Actually we can do better. If S, is label consistent then the

variable of the pairs (z,£) of P(Var, x Lab,) will always be
uniquely determined by the label £ so we get an O(b3) upper
bound on the number of basic operations. Furthermore, F' is
flow(.S,) and inspection of the equations for flow(S,) shows

that for each label £ we construct at most two pairs with £ in
the first component. This means that e < 2 -b and we get an

O(b?) upper bound on the number of basic operations.

74

The MOP Solution. Consider an instance (L, F, F, E,, f.)
of a Monotone Framework. We shall use the notation

¢ =[l,---,4,] for a sequence of n > 0 labels. The paths up
to but not including ¢ are

pathy(£) = {[l1, -, ln-1] | n > 1AVi<n:(l,Llit1) E FANLy, =LAl € E}
and the paths up to and including ¢ are:
pathy(£) = {[l1, - €] | n > 1AV <n: (L, liy1) € FAL, =LAl € E}

For a path £ = [01,---,¢,] we define the transfer function

7= fe, 00 fy0id

so that for the empty path we have f; | = id where id is the

identity function.

75

MOP,(£) = | [{fAt) | £ € path,(€)}

MOP.(€) = |_[{ft) | £ € path,(6)}

Unfortunately, the MOP solution is sometimes uncomputable
(meaning that it is undecidable) even though the MFP
solution is always easily computable (because of the property
space satisfying the Ascending Chain Condition); the
following result establishes one such result:

Lemma The MOP solution for Constant Propagation is

undecidable.

76

Lemma Consider the MFP and MOP solutions to an
instance (L, F, F, B, f.) of a Monotone Framework; then:

MFP, 3 MOP, and MFP, J MOP,

If the framework is distributive and if path,(£) # 0 for all £ in
E and F then:

MFP, = MOP, and MFP, = MOP,

It is always possible to formulate the MOP solution as an
MFP solution over a different property space (like P(L)) and
therefore little is lost by focusing on the fixed point approach

to Monotone Frameworks.

T

Interprocedural Analysis.

A program, P,, in the extended WHILE-language has the form
begin D, S, end
where D, is a sequence of procedure declarations:
D ::=proc p(val z,res y) is™» S end®” | D D

S u=---|[call p(a,z)]fﬁi

78

begin proc fib(val z, u, res v) is

1

if [z<3]? then [v:=u+1]?

else ([call fib(z-1,u,v)]3; [call fib(z-2,v,v)]$)

ends;

[call £ib(x,0,y)]%

end

79

init([call p(a, Z)]if)
final([call p(a, Z)]gj)
blocks([call p(a, Z)]if)
labels([call p(a, Z)]gi)

([ca11 p(a,)l

flow([call p(a, z)]

L

{4}

{[call p(a,z)]:}

{le, 6}

{(Kc; fn), (gwa Zr)}

if

proc p(val z,res y) is™ S end®

isin Dy

80

(Le;€y) and (£y;£,) are new kinds of flows:

o ({:;2,) is the flow corresponding to calling a procedure at
{. and with £,, being the entry point for the procedure
body, and

e (£;;4,) is the flow corresponding to exiting a procedure

body at £, and returning to the call at Z,.

81

Next consider the program P, of the form begin D, S, end.
For each procedure declaration proc p(val z,res y)

igfn S end’s we set

init(p) = ¥,
final(p) = {fz}
blocks(p) = {is®*,end®} U blocks(S)
labels(p) = {fn,{;} U labels(S)
flow(p) = {(ln,init(S))} U flow(S) U{(¢,£;) | £ € final(S)}

82

For the entire program P, we set

init, = init(Sy)
final, = final(S,)
blocks, = U{blocks | proc p(val ,res y) is™ S end’
is in D, } U blocks(Sy)
labels, = U{labe]s) | proc p(val x,res y) is S end®

is in D,} U labels(S,)
flow, = U{ﬂow | proc p(val z,res y) is» S end’
is in D, } U flow(S,)

as well as Lab, = labels,.

83

We shall also need to define a notion of interprocedural flow

inter-flow, = {(Le,Ln, ¥y, %) | P, contains [call p(a,z)]% P

as well as proc p(val z,res y) is’" S end®}

that clearly indicates the relationship between the labels of a

procedure call and the corresponding procedure body.

84

For the Fibonacci program we have

flow, = {(1,2),(2,3),(3,8),
(2,4),(4;1),(8;5),(5,6),(6;1),(8;7),(7,8),
(9;1),(8;10)}

inter-flow, = {(9,1,8,10),(4,1,8,5),(6,1,8,7)}

and init, =9 and final, = {10}.

85

For a forward analysis we use F' = flow,, F = {init,} and
IF = inter-flow, whereas for a backwards analysis we use
F = flow!', E = final, and IF = inter-flow,.

86

Intraprocedural versus Interprocedural Analysis.

e for each procedure call [call p(a, z)]ﬁj we have two
transfer functions f,, and f,, corresponding to calling the

procedure and returning from the call, and

e for each procedure definition
proc p(val x,res y) is» S end® we have two transfer
functions f,, and f,, corresponding to entering and
exiting the procedure body.

87

Au(f) = fu(As(0))
As() = | [{As(€) | (£,0) € For (¢;0) € F} U

’ L ifle &
LE:
1 if(¢E

88

The M VP solution.

Complete paths.

CPy, ¢, — 11 whenever 1 = /5

CPgl,g3 — 1, CP@z,és whenever (61,52) € F;

for a forward analysis this means that ({1, ¢3) € flow,

CPIZC,Z — L, CPgn,ggc, CPgr,g whenever (fc,fn,fm,f,«) € IF,

for a forward analysis this means that P, contains

£

[call p(a,2)],° and proc p(val z,res y) ist" S end’

89
Valid paths.
VP, — VPy, 4, whenever /; € E and /2 € Lab,
‘/Pglyg2 — 51 whenever fl = 52
VPghgs — {q, VPg2,g3 whenever (51,62) e F

VPy, o — Le,CPy, 4., VPy, o whenever (€, 0y, Ly, L) € IF

VPy, o — L, VP, 4 whenever (€., 4y, l;, L) € [F

90

vpath,(¢) = {[l1, -, ln_1] | n>1NL, =1
A[l1,---,£y,] is a valid path}

vpath,(¢) = {[l1,---, 4] |n>1AL, =1
A[l1,---,£y] is a valid path}

MVP, () = | [{f{t) | £ € vpath,(£)}

MVP.(0) = | [{fA¢) | £ € vpath,(£)}

91

Making Context Explicit.

e A context information

Consider an instance (L, F, F, E, ¢, f.) of a Monotone

Framework. We shall now construct an instance
(L7F?F’E7Z\?f-)

of an embellished monotone framework that takes context

into account.

92

e L=A—> L;
e the transfer functions in F are monotone; and

e each transfer function fy is given by f,(1)(8) = fi(I (6)).

A) = fu(As(0)
for all labels that do not label a procedure call

(i.e. that do not occur as first or fourth components

of a tuple in IF)

A(t) = | {Au(l) | (£,0) € For (¢;0) € F} UL,

for all labels (including procedure calls)

93

For a procedure definition proc p(val z,res y) is’® S end’

we have two transfer functions:
ﬁ:,ﬁ;:(A%L)—MA—)L)

In the case of our simple language we shall prefer to take both

of these transfer functions to be the identity function; i.e.
fu =1
fud =1

for all [€ L.

94

proc p(val z,res y)

T { L is\e”
70
Le
[call p(a,z) ¢
Y » v
—_— Ly
fei,er (l, l’) { end

—~

f}C:(A—>L)—>(A—>L)

Adle) = FL(Ao(L) for all (b, by, Ly, r) € TF

fi, (A= L)x(A—>L)— (A L)

—

AJ(l) = fl?c,eT(Ao(fc),Ao(fr)) for all (4e, by, by, L) € IF

96

proc p(val z,res y)

- igtn

[call p(a,z)]%

[call p(a, z)]e, | T—
l end’=

fgzc,g,n (i’ ﬁ) - fa(ﬁ)

97

~ —_—

2, (@0 = 24, () u 125, ()

C:e’f' c;er

proc p(val z,res y)

;) is’
[call p(a,z)]b| | ==
T, |
[call p(a, 2, | T—
T, '
end’s
Y

Call strings (unbounded) as context.

As the first possibility we simply encode the path taken; we
shall only record flows of the form (4.;/,,) corresponding to a
procedure call.

A = Lab*

where the most recent label /. of a procedure call is at the
right end (just as was the case for valid paths and paths);

elements of A are called call strings. We then define
T= (A1)

where A is the empty sequence corresponding to the fact that
there are no pending procedure calls when the program starts

execution.

99

For a procedure call (£, £y, by, £y) € IF, amounting to

[call p(a, z)]ﬁi in the case of a forward analysis, we define
the transfer function f1 such that fL (1)([6,£]) = f2 (i(6))
where [0, £.] denotes the path obtained by appending 4. to ¢
and the function felc : L - L describes how the property is
modified. This is achieved by setting

~

felc(l(d)) when §' = [, £.]

1 otherwise

L@ = {

100

12,0, U)(©6) = f2L0,(1(8), V([6, £c]))
Here the information [from the original call is combined with
information I from the procedure exit using the function
ffc’er : L x L — L. However, only information corresponding
to the same contexts for call point /. is combined: this is

ensured by the two occurrences of § in the above formula.

101

Call strings (bounded) as context.

A = Lab=*

and we still take the extremal value to be 7= (A, ¢). Note
that in the case kK = 0 we have A = {A} which is equivalent

to having no context information.

102

The transfer function]?ZTC for procedure call is redefined by
FLD(S) = LKL 1(8) | 8 =6, £1x}

Similarly, the transfer function f£2¢ s, for procedure return is
redefined by

2, (00) = 12, (1(6), P (15, £]x))

103

Flow-Sensitivity versus Flow-Insensitivity.

All of the data flow analyses we have considered so far have
been flow-sensitive: this just means that in general we would
expect the analysis of a program S7; 53 to differ from the
analysis of the program S5;.5; where the statements come in
a different order.

Sometimes one considers flow-insensitive analyses where the
order of statements is of no importance for the analysis being
performed. Clearly a flow-insensitive analysis may be much
less precise than its flow-sensitive analogue but also it is
likely to be much cheaper; since interprocedural data flow
analyses tend to be very costly, it is therefore useful to have a

repertoire of techniques for reducing the cost.

104

The set IAV(S) of directly assigned variables gives for each
statement S the set of variables that could be assigned in S —

but ignoring the effect of procedure calls.

IAV([skip]’) = 0
IAV([z :==d]®) = {z}
IAV(S1;S2) = IAV(S1)UIAV(Ss)
TAV(if [b]® then S else So) = IAV(S;)UIAV(S,)
TAV(while [b]* do S) = IAV(S)
IAV([call p(a, 2)) = {2}

105

The set ICP(S) of immediately called procedures that gives
for each statement S the set of procedure names that could
be directly called in S — but ignoring the effect of procedure

calls.
ICP([skip]®) = 0
ICP([z :=a]®) = 0
ICP(S1;Ss) = ICP(S1)UICP(S,)
ICP(if [b]* then S; else S3) = ICP(S1)UICP(Ss)
ICP(while [0 do S) = ICP(S)
ICP((call p(a,9If) = {p}

106

AV(p) = (IAV(S)\{z}) U J{AV(Y) | ¥’ € ICP(S)}

where proc p(val z,res y) is™ S end® is in D,

107

begin proc fib(val z) is
if z<3 then call add(1)
else (call fib(z-1); call fib(z-2))
end;
proc add(val u) is (y:=y+u; u:=0)
end;
y:=0; call fib(x)

end

AV(£ib) = (0\ {z})UAV(£ib) U AV(add)
AV(add) = {y,u}\{u}

108

109

The least solution to the equation system is
AV(fib) = AV(add) = {y}

showing that only the variable y will be assigned by the
procedure calls.

110

