Partially ordered set. A partial ordering is a relation $\sqsubseteq: L \times L \to \{true, false\}$ that is reflexive (i.e. $\forall l: l \sqsubseteq l$), transitive (i.e. $\forall l_1, l_2, l_3: l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3$), and anti-symmetric (i.e. $\forall l_1, l_2: l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2$).

A partially ordered set (L, \sqsubseteq) is a set L equipped with a partial ordering \sqsubseteq (sometimes written \sqsubseteq_L). We shall write $l_2 \supseteq l_1$ for $l_1 \sqsubseteq l_2$ and $l_1 \sqsubset l_2$ for $l_1 \sqsubseteq l_2 \land l_1 \neq l_2$.

1

Example: Integers. The intergers ordered in the usual way, i.e. for two integers i_1, i_2 :

$$i_1 \sqsubseteq i_2 \text{ iff } i_1 < i_2$$

Example: Powerset. Take a (finite) set X and look at the set of all sub-sets of X, i.e. its *power set* $\mathcal{P}(X)$. A partial ordering on $\mathcal{P}(X)$ is given by *inclusion*, i.e. for two sub-sets $S_1, S_2 \in \mathcal{P}(X)$:

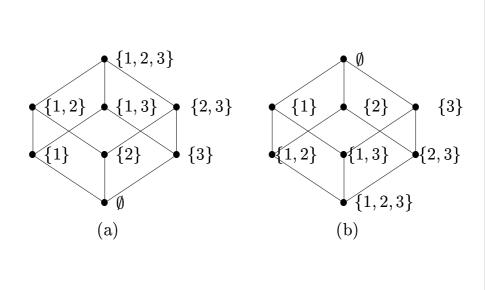
$$S_1 \sqsubseteq S_2 \text{ iff } S_1 \subseteq S_2$$

A subset Y of L has $l \in L$ as an upper bound if $\forall l' \in Y : l' \sqsubseteq l$ and as a lower bound if $\forall l' \in Y : l' \supseteq l$. A least upper bound l of Y is an upper bound of Y that satisfies $l \sqsubseteq l_0$ whenever l_0 is another upper bound of Y; similarly, a greatest lower bound l of Y is a lower bound of Y that satisfies $l_0 \sqsubseteq l$ whenever l_0 is another lower bound of Y. Note that subsets Y of a partially ordered set L need not have least upper bounds nor greatest lower bounds but when they exist they are unique (since \sqsubseteq is anti-symmetric) and they are denoted $\bigsqcup Y$ and $\bigsqcup Y$, respectively. Sometimes \bigsqcup is called the join operator and \bigsqcup the meet operator and we shall write $l_1 \sqcup l_2$ for $\bigsqcup \{l_1, l_2\}$ and similarly $l_1 \sqcap l_2$ for $\bigsqcup \{l_1, l_2\}$.

3

Complete lattice. A complete lattice

 $L = (L, \sqsubseteq) = (L, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$ is a partially ordered set (L, \sqsubseteq) such that all subsets have least upper bounds as well as greatest lower bounds. Furthermore, $\bot = \sqcup \emptyset = \sqcap L$ is the least element and $\top = \sqcap \emptyset = \sqcup L$ is the greatest element.



5

Example: Powerset. Take a (finite) set X and look again at its power set $\mathcal{P}(X)$. A partial ordering \sqsubseteq on $\mathcal{P}(X)$ is given as above by inclusion. The meet and join operators are given by (set) intersection

$$S_1 \sqcap S_2 = S_1 \cap S_2$$

and (set) union

$$S_1 \sqcup S_2 = S_1 \cup S_2.$$

The least and greatest elements in $\mathcal{P}(X)$ are given by $\bot = \emptyset$ and $\top = X$.

Properties of functions. A function $f: L_1 \to L_2$ between partially ordered sets $L_1 = (L_1, \sqsubseteq_1)$ and $L_2 = (L_2, \sqsubseteq_2)$ is surjective (or onto or epic) if

$$\forall l_2 \in L_2 : \exists l_1 \in L_1 : f(l_1) = l_2$$

and it is injective (or 1-1 or monic) if

$$\forall l, l' \in L_1 : f(l) = f(l') \Rightarrow l = l'$$

The function f is monotone (or isotone or order-preserving) if

$$\forall l, l' \in L_1 : l \sqsubseteq_1 l' \Rightarrow f(l) \sqsubseteq_2 f(l')$$

7

It is an *additive* function (or a *join morphism*, sometimes called a *distributive* function) if

$$\forall l_1, l_2 \in L_1 : f(l_1 \sqcup l_2) = f(l_1) \sqcup f(l_2)$$

and it is called a *multiplicative* function (or a *meet* morphism) if

$$\forall l_1, l_2 \in L_1 : f(l_1 \sqcap l_2) = f(l_1) \sqcap f(l_2)$$

The function f is a completely additive function (or a complete join morphism) if for all $Y \subseteq L_1$:

$$f(\bigsqcup_1 Y) = \bigsqcup_2 \{f(l') \mid l' \in Y\}$$
 whenever $\bigsqcup_1 Y$ exists

and it is completely multiplicative (or a complete meet morphism) if for all $Y \subseteq L_1$:

$$f(\bigcap_1 Y) = \bigcap_2 \{f(l') \mid l' \in Y\}$$
 whenever $\bigcap_1 Y$ exists

The function f is affine if for all non-empty $Y \subseteq L_1$

$$f(\bigsqcup_1 Y) = \bigsqcup_2 \{f(l') \mid l' \in Y\}$$
 whenever $\bigsqcup_1 Y$ exists (and $Y \neq \emptyset$

and it is *strict* if $f(\perp_1) = \perp_2$; note that a function is completely additive if and only if it is both affine and strict.

9

Cartesian product. Let $L_1 = (L_1, \sqsubseteq_1)$ and $L_2 = (L_2, \sqsubseteq_2)$ be partially ordered sets. Define $L = (L, \sqsubseteq)$ by

$$L = \{(l_1, l_2) \mid l_1 \in L_1 \land l_2 \in L_2\}$$

and

$$(l_{11}, l_{21}) \sqsubseteq (l_{12}, l_{22})$$
 iff $l_{11} \sqsubseteq_1 l_{12} \wedge l_{21} \sqsubseteq_2 l_{22}$

If additionally each $L_i = (L_i, \sqsubseteq_i, \bigsqcup_i, \sqcap_i, \bot_i, \top_i)$ is a complete lattice then so is $L = (L, \sqsubseteq, \bigsqcup, \sqcap, \bot, \top)$ and furthermore

$$\bigsqcup Y = (\; \bigsqcup_1 \{l_1 \mid \exists l_2 : (l_1, l_2) \in Y\} \;,\; \bigsqcup_2 \{l_2 \mid \exists l_1 : (l_1, l_2) \in Y\} \;)$$

and $\bot = (\bot_1, \bot_2)$ and similarly for $\prod Y$ and \top . We often write $L_1 \times L_2$ for L and call it the *cartesian product* of L_1 and L_2 .

Total function space. Let $L_1 = (L_1, \sqsubseteq_1)$ be a partially ordered set and let S be a set. Define $L = (L, \sqsubseteq)$ by

$$L = \{f : S \to L_1 \mid f \text{ is a total function}\}\$$

and

$$f \sqsubset f' \text{ iff } \forall s \in S : f(s) \sqsubset_1 f'(s)$$

If additionally $L_1 = (L_1, \sqsubseteq_1, \bigsqcup_1, \bigcap_1, \bot_1, \top_1)$ is a complete lattice then so is $L = (L, \sqsubseteq, \bigcup, \bigcap, \bot, \top)$ and furthermore

and $\bot = \lambda s. \bot_1$ and similarly for $\square Y$ and \top . We often write $S \to L_1$ for L and call it the *total function space* from S to L_1 .

11

Monotone function space. Again let $L_1 = (L_1, \sqsubseteq_1)$ and $L_2 = (L_2, \sqsubseteq_2)$ be partially ordered sets. Now define $L = (L, \sqsubseteq)$ by

$$L = \{f : L_1 \to L_2 \mid f \text{ is a monotone function}\}$$

and

$$f \sqsubseteq f' \text{ iff } \forall l_1 \in L_1 : f(l_1) \sqsubseteq_2 f'(l_1)$$

If additionally each $L_i = (L_i, \sqsubseteq_i, \bigsqcup_i, \sqcap_i, \bot_i, \top_i)$ is a complete lattice then so is $L = (L, \sqsubseteq, \bigsqcup, \bigcap, \bot, \top)$ and furthermore

and $\perp = \lambda l_1. \perp_2$ and similarly for $\prod Y$ and \top . We often write $L_1 \to L_2$ for L and call it the monotone function space from L_1 to L_2 .

Chains. A subset $Y \subseteq L$ of a partially ordered set $L = (L, \sqsubseteq)$ is a *chain* if

$$\forall l_1, l_2 \in Y : (l_1 \sqsubseteq l_2) \lor (l_2 \sqsubseteq l_1)$$

Thus a chain is a (possibly empty) subset of L that is totally ordered. We shall say that it is a *finite chain* if it is a finite subset of L.

A sequence $(l_n)_n = (l_n)_{n \in \mathbb{N}}$ of elements in L is an ascending chain if

$$n \leq m \Rightarrow l_n \sqsubseteq l_m$$

Writing $(l_n)_n$ also for $\{l_n \mid n \in \mathbf{N}\}$ it is clear that an ascending chain also is a chain. Similarly, a sequence $(l_n)_n$ is a descending chain if

$$n \leq m \Rightarrow l_n \supseteq l_m$$

13

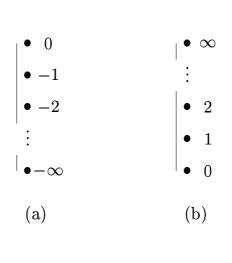
We shall say that a sequence $(l_n)_n$ eventually stabilises if and only if

$$\exists n_0 \in \mathbf{N} : \forall n \in \mathbf{N} : n \geq n_0 \Rightarrow l_n = l_{n_0}$$

For the sequence $(l_n)_n$ we write $\bigsqcup_n l_n$ for $\bigsqcup\{l_n \mid n \in \mathbf{N}\}$ and similarly we write $\prod_n l_n$ for $\prod\{l_n \mid n \in \mathbf{N}\}$.

Ascending Chain and Descending Chain Conditions.

We shall say that a partially ordered set $L=(L,\sqsubseteq)$ has finite height if and only if all chains are finite. It has finite height at most h if all chains contain at most h+1 elements; it has finite height h if additionally there is a chain with h+1 elements. The partially ordered set L satisfies the Ascending $Chain\ Condition$ if and only if all ascending chains eventually stabilise.



15

Reductive and extensive functions. Consider a monotone function $f: L \to L$ on a complete lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$. A fixed point of f is an element $l \in L$ such that f(l) = l and we write

$$Fix(f) = \{l \mid f(l) = l\}$$

for the set of fixed points. The function f is reductive at l if and only if $f(l) \sqsubseteq l$ and we write

$$Red(f) = \{l \mid f(l) \sqsubseteq l\}$$

for the set of elements upon which f is reductive; we shall say that f itself is reductive if Red(f) = L. Similarly, the function f is extensive at l if and only if $f(l) \supseteq l$ and we write

$$Ext(f) = \{l \mid f(l) \supseteq l\}$$

Since L is a complete lattice it is always the case that the set Fix(f) will have a greatest lower bound in L and we denote it by lfp(f):

$$lfp(f) = \prod Fix(f)$$

Similarly, the set Fix(f) will have a least upper bound in L and we denote it by gfp(f):

$$gfp(f) = \bigsqcup Fix(f)$$

17

If L satisfies the Ascending Chain Condition then there exists n such that $f^n(\bot) = f^{n+1}(\bot)$ and hence $lfp(f) = f^n(\bot)$. (Indeed any monotone function f over a partially ordered set satisfying the Ascending Chain Condition is also continuous.) Similarly, if L satisfies the Descending Chain Condition then there exists n such that $f^n(\top) = f^{n+1}(\top)$ and hence $gfp(f) = f^n(\top)$.

Fixed points and solutions. Given some equation(s) over some domain, e.g.

$$6x^3 - 3x^2 - x = 7$$

look at it as a "recursive" equation:

$$6x^3 - 3x^2 - 7 = x$$

or simply:

$$f(x) = x$$
.

If x therefore is a fixed point of f it is also a solution to the original equation.

19

Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice and $f:L\mapsto L$ an order-preserving map. Then

$$| | \{x \in L \mid x \sqsubseteq f(x)\} \in Fix(f).$$

B.A. Davey and H.A. Priestley: *Introduction to Lattices and Order*, Cambridge 1990.