Partially ordered set. A partial ordering is a relation
C: L x L — {true, false} that is reflexive (i.e. Vi : [ C 1),
transitive (i.e. Viy,la,l3: 11 Cla Aly Els = 11 C l3), and
anti-symmetric (i.e. Vi1,lo : i Cla Ala T 1y = 11 = 19).

A partially ordered set (L,C) is a set L equipped with a
partial ordering C (sometimes written Cp). We shall write
lo Jlyforly Cls and Iy T lg for I3 T s Al # Is.

Example: Integers. The intergers ordered in the usual

way, i.e. for two integers i1, ¢o:

11 Cag iff 41 <o

Example: Powerset. Take a (finite) set X and look at the
set of all sub-sets of X, i.e. its power set P(X). A partial
ordering on P(X) is given by inclusion, i.e. for two sub-sets
51,82 € P(X):

S1E Sy iff 51 C 5o




A subset Y of L has [ € L as an upper bound if V' €Y : ' C |
and as a lower bound if VI' € Y : " J 1. A least upper bound |
of Y is an upper bound of Y that satisfies | C [y whenever [
is another upper bound of Y'; similarly, a greatest lower bound
[l of Y is a lower bound of Y that satisfies [y C | whenever [
is another lower bound of Y. Note that subsets Y of a
partially ordered set L need not have least upper bounds nor
greatest lower bounds but when they exist they are unique
(since C is anti-symmetric) and they are denoted | |Y and
[1Y, respectively. Sometimes | | is called the join operator

and [ | the meet operator and we shall write I; LI l5 for
LI{l1,12} and similarly I3 My for [1{l1,12}.

Complete lattice. A complete lattice
L=(L,C)=(L,C,I,[1,L,T) is a partially ordered set

(L, ) such that all subsets have least upper bounds as well
as greatest lower bounds. Furthermore, | =| |0 =[]L is the
least element and T =[]0 = || L is the greatest element.




Example: Powerset. Take a (finite) set X and look again
at its power set P(X). A partial ordering C on P(X) is given
as above by inclusion. The meet and join operators are given

by (set) intersection
S1M Sy =51NSy

and (set) union

S1 U Sy =851 USs.

The least and greatest elements in P(X) are given by L = ()
and T = X.




Properties of functions. A function f : Ly — Lo between
partially ordered sets L1 = (L1,C1) and Le = (Lg,Co) is

surjective (or onto or epic) if
Vlp€ Ly :3l € Ly : f(lh) = 1o
and it is injective (or 1-1 or monic) if
VLl eLy: f()=fl)Y=1=1
The function f is monotone (or isotone or order-preserving) if

Vl,ll eLli:14 ! = f(l) Lo f(l,)

It is an additive function (or a join morphism, sometimes

called a distributive function) if

Viy,ls € Ly : f(l1 L lz) = f(ll) L f(lz)

and it is called a multiplicative function (or a meet

morphism) if

Vi, la € Ly : f(IiNle) = £(I1) N f(I2)




The function f is a completely additive function (or a

complete join morphism) if for all Y C Ly:

f(l_l 1Y) = |_|2{f(l') | ' € Y} whenever |_| 1Y exists

and it is completely multiplicative (or a complete meet
morphism) if for all Y C Ly:

f(l_l 1Y) = I_Ig{f(ll) | ' € Y} whenever |_|1Y exists
The function f is affine if for all non-empty ¥ C Ly

f(l_l 1Y) = |_|2{f(l') | ! € Y} whenever |_| 1Y exists (and Y # (O

and it is strict if f(L1) = Lo; note that a function is

completely additive if and only if it is both affine and strict.

Cartesian product. Let Ly = (L1,C1) and Le = (L, Co)
be partially ordered sets. Define L = (L,C) by

L={(l1,l2) |1 € L1 Nl € Ly}
and
(li1,021) € (h2,l22) iff l11 T lia A o1 o loo
If additionally each L; = (L;, C;, ;[ 14, Li, T4) is a complete
lattice then so is L = (L,C,||,[ ], L, T) and furthermore
LY = (| |1l |3l : (1) € Y}, | o{lo | Tt : (I, 1) € Y})

and L = (L4, 12) and similarly for [1Y and T. We often
write L X Lo for L and call it the cartesian product of Ly
and LQ.
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Total function space. Let L; = (L1,C;) be a partially
ordered set and let S be a set. Define L = (L,C) by

L={f:S— Ly | f is a total function}
and
FEf iff Vs€S: f(s)T1 f(s)

If additionally Ly = (L1,Cq, | l,[ 11, L1, T1) is a complete
lattice then so is L = (L,C,||,[ ], L, T) and furthermore

LY =xs.| |1 {f(s)| fFeY}

and 1 = As.l; and similarly for [ Y and T. We often write
S — Ly for L and call it the total function space from S to
L.
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Monotone function space. Again let Ly = (L1,C4) and
Ly = (L9, Cs) be partially ordered sets. Now define
L= (L,E) by

L={f:Li — Lo | f is a monotone function}

and

FCf iff Vi€ Ly: f(lh) T2 f/(Iy)
If additionally each L; = (L;, 4, l;,[ 1i, Li, T4) is a complete
lattice then so is L = (L,C,||,[ ], L, T) and furthermore

LY = x| [2{f() [ feY}

and L = Al;.19 and similarly for [ |Y and T. We often write
L1 — Lo for L and call it the monotone function space from
L1 to Ls.
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Chains. A subset Y C L of a partially ordered set
L= (L,C) is a chain if

Vi, lo €Y : (ll C l2) V (l2 C ll)

Thus a chain is a (possibly empty) subset of L that is totally
ordered. We shall say that it is a finite chain if it is a finite
subset of L.

A sequence (I,)r, = (I)nen of elements in L is an ascending
chain if

n<m=1,LCl,
Writing (1,,),, also for {l,, | n € N} it is clear that an

ascending chain also is a chain. Similarly, a sequence (I,,)y, is

a descending chain if

n<m=1, Jl,
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We shall say that a sequence (l,), eventually stabilises if and
only if
dngeN:VneN:n>nyg=1, =1,

For the sequence (I,), we write | |,,l,, for | [{l,, | n € N} and
similarly we write [ ],,l,, for [1{l, | n € N}.

Ascending Chain and Descending Chain Conditions.
We shall say that a partially ordered set L = (L,C) has finite
height if and only if all chains are finite. It has finite height
at most h if all chains contain at most h + 1 elements; it has
finite height h if additionally there is a chain with h + 1
elements. The partially ordered set L satisfies the Ascending
Chain Condition if and only if all ascending chains eventually
stabilise.

14




o —1

°_2 )
e 1

o0 ¢ 0
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Reductive and extensive functions. Consider a

monotone function f : L — L on a complete lattice
L= (LG L][1,L,T). A fized point of f is an element [ € L
such that f(I) =1 and we write

Fix(f) ={l| f() = 1}

for the set of fixed points. The function f is reductive at [ if

and only if f(I) C [ and we write
Red(f) ={l| f() E1}

for the set of elements upon which f is reductive; we shall say
that f itself is reductive if Red(f) = L. Similarly, the

function f is extensive at I if and only if f(I) I [ and we write

Ext(f) ={l| f(1) 21}
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Since L is a complete lattice it is always the case that the set

Fix(f) will have a greatest lower bound in L and we denote it
by Ifp(f):

fp(f) = |Fix(f)
Similarly, the set Fix(f) will have a least upper bound in L
and we denote it by gfp(f):

gfp(f) = | | Fix(f)
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If L satisfies the Ascending Chain Condition then there exists
n such that f?(1) = f**1(L) and hence Ifp(f) = f™(L).
(Indeed any monotone function f over a partially ordered set
satisfying the Ascending Chain Condition is also continuous.)
Similarly, if L satisfies the Descending Chain Condition then
there exists n such that f*(T) = f**!(T) and hence

gfp(f) = f*(7).
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Fixed points and solutions. Given some equation(s) over

some domain, e.g.
625 — 3z —x =7
look at it as a “recursive” equation:
625 — 32> —7T==z

or simply:

flz) ==

If x therefore is a fixed point of f it is also a solution to the

original equation.
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Knaster-Tarski Fixpoint Theorem. Let L be a complete

lattice and f : L — L an order-preserving map. Then

| Kz € L|z C f(z)} € Fix(f).

B.A. Davey and H.A. Priestley: Introduction to Lattices and
Order, Cambridge 1990.
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