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Abstract. Recent work has used variations of symbolic execution to
automatically generate high-coverage test inputs [3, 4, 7, 8, 14]. Such
tools have demonstrated their ability to find very subtle errors. However,
one challenge they all face is how to effectively handle the exponential
number of paths in checked code. This paper presents a new technique
for reducing the number of traversed code paths by discarding those that
must have side-effects identical to some previously explored path. Our
results on a mix of open source applications and device drivers show
that this (sound) optimization reduces the numbers of paths traversed
by several orders of magnitude, often achieving program coverage far out
of reach for a standard constraint-based execution system.

1 Introduction

Software testing is well-recognized as both a crucial part of software develop-
ment and, because of the weakness of current testing techniques, a perennial
problem as well. Manual testing is labor intensive and its results often closer to
embarrassing than impressive. Random testing is easily applied, but also often
gets poor coverage. Even a single equality conditional can derail it: satisfying a
32-bit equality in a branch condition requires correctly guessing one value out of
four billion possibilities. Correctly getting a sequence of such conditions is hope-
less. Recent work has attacked these problems using constraint-based execution

(a variant of symbolic execution) to automatically generate high-coverage test
inputs [3, 4, 7, 8, 14].

At a high-level, these tools use variations on the following idea. Instead of
running code on manually or randomly constructed input, they run it on sym-
bolic input that is initially allowed to take any value. They substitute program
variables with symbolic values and replace concrete program operations with
ones that manipulate symbolic values. When program execution branches based
on a symbolic value, the system (conceptually) follows both branches at once,
maintaining a set of constraints called the path constraint which must hold on
execution of that path. When a path terminates or hits a bug, a test case can be
generated by solving the current path constraint to obtain concrete input values.
Assuming deterministic code, feeding this concrete input to an uninstrumented
version of the checked code will cause it to follow the same path and hit the
same bug.



A significant scalability challenge for these tools is how to handle the ex-
ponential number of paths in the code. Recent work has tried to address this
scalability challenge in a variety of ways: by using heuristics to guide path explo-
ration [4]; caching function summaries for later use by higher-level functions [7];
or combining symbolic execution with random testing [13].

This paper presents a largely complementary technique that prunes redun-
dant paths by tracking the memory locations read and written by the checked
code, in order to determine when the remainder of a particular execution is ca-
pable of exploring new behaviors. This technique, which we call read-write set

(RWset) analysis, dramatically reduces the number of paths explored by dis-
carding those that will produce the same effects as some previously explored
path.

RWset analysis employs two main ideas. First, an execution that reaches a
program point in the same state as some previous execution will produce the
same subsequent effects and can be pruned. Second, this idea can be greatly
amplified by exploiting the fact that two states that only differ in program values
that are not subsequently read will produce the same subsequent effects and can
be treated as being identical. Consequently, the second execution is redundant
and can also be pruned.

We measure the effectiveness of our RWset implementation by applying it
to server, library, and device driver code. Our results show that RWset analysis
is effective in discarding redundant paths, often reducing the number of paths
traversed by several orders of magnitude and achieving coverage out-of-reach for
the base version of the system, which easily gets stuck continuously revisiting
provably redundant states.

The paper is structured as follows. Section 2 gives an overview of RWset
analysis using several small examples, while Section 3 discusses the implementa-
tion more thoroughly. Section 4 measures the efficiency of our implementation.
Finally, Section 5 discusses related work and Section 6 concludes.

2 Overview

This section gives a general overview of RWset analysis. To make the paper self-
contained, we first briefly describe how constraint-based execution works in the
context of our tool, EXE. (For the purpose of this paper, one can view other
constraint-based execution tools as roughly equivalent; RWset analysis can be
implemented in any of them.) We subsequently describe the main idea behind
RWset analysis and then discuss some of the refinements employed to maximize
the number of redundant paths detected.

2.1 Constraint-based execution

EXE lets users explicitly mark which memory locations should be treated as
holding symbolic data, whose values are initially entirely unconstrained. EXE
instruments the user program so that it can track these symbolic values. When



Path Constraints

Path 1 Path 2

1: x = read_sym_input(); {x = ∗}

2: if(x == 1234) ւ fork ց

3: printf("foo"); {x = 1234}

4: else printf("bar"); {x 6= 1234}

5: ... {x = 1234} {x 6= 1234}

Fig. 1: Contrived example to illustrate constraint-based execution. The code has two
paths, both of which will be followed. The first path (lines 1,2,3,5) ends with the
constraint that x = 1234. The second (lines 1,2,3,4) with the constraint that x 6= 1234.

the program runs, at each statement EXE checks if all inputs to that statement
have exactly one value, i.e. they are concrete rather than symbolic. In such
cases, the statement executes exactly as it would in the uninstrumented code.
Otherwise, EXE adds the effects of the statement as a constraint to the current
path. For example, given the statement i = x + y, if x and y have the values
x = 4 and y = 5, EXE executes the statement and assigns the 9 to i. If not, it
adds the path constraint that i = x + y.

When execution reaches a symbolic branch condition, EXE uses the STP
constraint solver [5] to check if the current path constraints make either branch
direction infeasible, and, if so, follows the other. If it cannot prove that one di-
rection is infeasible, EXE (conceptually) forks execution and follows both paths,
adding the appropriate branch constraint on each path.

To illustrate these points, consider the contrived code in Figure 1, where
the call to read sym input() marks x as an unconstrained symbolic value. This
code has two feasible paths, both of which EXE will explore, and generates two
concrete test cases to exercise each path. The steps followed by EXE are as
follows:

Line 1: EXE adds the path constraint x = ∗, i.e. x is unconstrained.

Line 2: Since both branches are possible, EXE forks execution: on the true
path it adds the constraint x = 1234 and on the false path the constraint
x 6= 1234.

Line 3, 5: Assume that EXE follows the true path first. When it terminates
or hits an error, EXE solves the path constraints for concrete values. In this
case it will generate x = 1234. If the code is deterministic, rerunning the
program on this value will cause the same path (lines 1,2,3,5,...) to execute.

Line 4, 5: Similarly, the false path is followed and generates more test cases.

In order to handle real code, EXE tracks all constraints with bit-level accu-
racy. EXE supports pointers, arrays, unions, bit-fields, casts, and aggressive bit-
operations such as shifting, masking, and byte swapping. The interested reader
can refer to [4] for details.



2.2 Scalability challenge: discarding redundant paths

While constraint-based execution can automatically explore program paths, the
number of distinct paths increases exponentially with the number of conditional
statements traversed. In all but the smallest programs, this typically leads to
an essentially inexhaustible set of paths to explore. However, not all paths are
equal; very often multiple paths produce the same effects, and there is no reason
to explore more than one such path. The effects of an execution path can be
defined in any way desired, depending on the needs of the testing process. One
common definition, which we also use in this paper, defines the effects of an
execution path to be the basic blocks it executes.

The basic idea behind RWset analysis is to truncate exploration of a path as
soon as we can determine that its continued execution will produce effects that
we have seen before. In particular, we stop exploring a path as soon as we can
determine that its suffix will execute exactly the same as the suffix of a previously
explored path. Note that truncating a path explored by EXE results in a large
gain, as the number of new paths spawned from a path can be exponential
in the number of symbolic branch conditions encountered in its suffix. In real
code, this truncation can easily be the difference between doing useful work and
getting uselessly stuck revisiting that same program point in equivalent states,
as illustrated in one of the contrived examples presented later in this section,
but also as suggested by our experiments in Section 4.

The RWset algorithm is sound – relative to the base system – with respect
to the effects that we observe in the program (in our particular implementation
with respect to the basic branch coverage achieved in the program), as the RWset
analysis only discards execution paths that are proven to generate the same
effects as some previously explored path (e.g., that are proven to cover the very
same basic blocks). The soundness guarantee is relative to the base system,
because the RWset technique only discards redundant paths; if, for example, the
base symbolic execution tool misses a non-redundant path due to imprecision in
its analysis, then the RWset version of the same system will miss that path too.

In order to determine when we can stop executing a path, we apply the
simple observation that deterministic code applied to the same input in the
same internal state must compute the same result. For simplicity, assume for
now that the state of a program is just the current set of path constraints (we
discuss details concerning program states in the next section). If a path arrives at
a program point in the same state as a previous instance, the system generates
a test case, and then halts execution. We call such an event a cache hit. We
generate a test case on a cache hit so that the prefix of the path (which so far
has been unique) will be tested.

The attentive reader will note that, as discussed so far, such a cache hit
will actually be fairly rare — the only reason a different path would execute is
because of a branch, which would add the corresponding branch condition on
one path and its negation on the other (e.g., x = 1234 and x 6= 1234), preventing
most subsequent cache hits. We greatly increase the applicability of the basic
idea by exploiting the following refinement: a value not subsequently read by



Constraint Cache Live Refined
No refinement vars cache

1: x = read_sym_input(); {x = ∗} {x} {x = ∗}

2: if(x == 1234) {x = ∗} {} {}

3: printf("foo"); {x = 1234} {} {}

4: else printf("bar"); {x 6= 1234} {} {}

5: ... {x = 1234}, {x 6= 1234} {} {} HIT!

Fig. 2: Constraint cache example using code from Figure 1 both with and without re-
finement. The constraint cache is used to truncate paths that reach a program point
with the same constraints as some previous path. “Live vars” denotes the set of all
variables read by code after a program point given a set of path constraints. Refine-
ment considers two constraint sets equal if all constraints (transitively) involving live
variables are equal.

the program can be dropped from the state, as it cannot affect any subsequent
computation.

As the program executes, a constraint cache records all the states with which
each program point was reached. When we get a cache hit (i.e., a path reaches
a program point with the same constraint set as some previous path) we stop
executing the path. We illustrate how RWset analysis works on the simple code
example in Figure 1, both without and with the refinement discussed above. As
shown in Figure 2, the initially empty constraint cache gets populated by the
two code paths as follows. At line 1, EXE checks if the path constraint {x = ∗}
is already in the cache. Since this is not the case, the constraint set is added to
this program point and execution continues. When line 2 is reached, EXE forks
execution, adding the constraint x = 1234 on the first path, and x 6= 1234 on the
second. Subsequently, the current constraint set for each path is added to the
constraint cache: {x = 1234} at line 3, and {x 6= 1234} at line 4. Finally, when
both paths reach line 5, they add their current constraint sets to the constraint
cache.

Note that when the second path reaches line 5 with constraint set {x 6= 1234},
there is no cache hit, since the only constraint set already in the cache at this
point is {x = 1234}. However, if we assume that the code from line 5 onward
does not read x again (x is a dead variable), we can drop all the constraints
involving x, thus changing the picture dramatically.

More precisely, before adding the constraint set to the cache, we intersect it
with the current set of live variables (details on how liveness is computed in our
frameworks are described in § 3.2). Since x is not read after line 2 it is not in
the set of live variables, and at lines 2, 3, 4 and 5 we add the empty set to the
constraint cache. In particular, when path 1 reaches line 5, it adds the empty
set to the cache. Then, when path 2 reaches line 5 too, its constraint set is also
the empty set, and thus the system gets a cache hit at this point, and stops
executing path 2. As discussed earlier, when pruning path 2, EXE generates a
test case to cover path 2’s unique prefix – if we did not generate a test case,
we would not have a test case that exercises the printf call at line 4. Note



that pruning a path can save significant work since the number of paths the
pruned path would otherwise spawn can increase exponentially with the number
of symbolic branches hit by the path’s suffix.

As positive as it is to truncate paths spawned at if-statements, it is even bet-
ter to truncate loops. As an example, consider a common style of event process-
ing loop that shows up frequently in device drivers and networking applications
where the code spins in an infinite loop, reading data and then processing it:

while(1) {

x = read_data(); // x is symbolic.

process(x);

}

Here, a naive constraint-based execution system will never terminate, since it
will keep reading new symbolic data and generating new paths. A widely-used
hack for handling such loops is to traverse them a fixed number of times. Un-
fortunately, such blind truncation can easily miss interesting paths. In contrast,
as long as the loop has a finite number of states (or more precisely, as long as
it is observed in a finite number of ways), RWset analysis will automatically
determine when the loop reaches a fixed point and terminate it afterwards. Note
that while the code above is contrived, the problem is very real: handling such
loops in device drivers and networking applications was a primary motivation to
build RWset analysis in EXE.

As an even more common pattern, consider the case of a loop that uses a
symbolic variable as a loop bound, as in the following code where we assume the
constraint that n < 10:

...

1: for(i = 0; i < n; i++)

2: foo();

3: ...no reads of i, n...

When running this loop, EXE will spawn ten new executions, one for every
feasible loop exit, each with different constraints on n (that is, NOT (0 < n),
NOT (1 < n), etc). If there are no subsequent reads of i or n, then RWset analysis
will prune all but one of these ten new executions, thus saving an enormous
amount of subsequent work.

3 Key Implementation Details

This section discusses some key implementation details that are critical in mak-
ing the approach scale to real applications. To make the exposition clearer, Ta-
ble 1 groups the terms used by this section for ease of reference.

3.1 Program states

This section discusses state representation issues.



Term Definition

Program point (§ 3.1) A context-sensitive MD4 hash of the program counter
and callstack.

Path constraints (§ 2.1) All constraints accumulated on a given path thus far.
Writeset (§ 3.1) The set of concrete values written to concrete memory

locations by a given path thus far.
Readset (§ 3.2) All locations read after a program point given a program

state.
Program state (§ 3.1) A program point plus its writeset and path constraints

Two program paths with identical program states must
produce identical subsequent effects.

Table 1: Terminology

Handling mixed symbolic and concrete execution. If execution hap-
pened entirely symbolically, path constraints would provide a complete descrip-
tion of the current program state and would be the only thing stored in the
constraint cache. However, for efficiency, we want to do as many things con-
cretely as possible. While conceptually concrete values can be viewed as equality
constraints (e.g., if variable x has the value 4, this could be represented by the
constraint x = 4), it is more efficient to separate the symbolic and concrete cases.
Thus, a program state includes both the current path constraints (the symbolic
state) and the values of all concrete memory locations (the concrete state).

Because the concrete state can be huge, we do not record it directly but
instead only track the set of values written along the path — i.e., the path’s
difference from the initial concrete state all paths begin in. We call this set the
writeset. When a concrete value x is assigned to a memory location v, we add
the pair (v, x) to the writeset. We reduce spurious differences between writesets
by removing a memory location from a writeset in two cases. First, when it is
deallocated (by function call return or explicit heap deallocation) since we know
these elements cannot be read later (a separate component of EXE catches use-
after-free errors). Note that we only remove these values from the writeset, not
from the path constraints, since deallocating a variable should have no impact
on previously formulated constraints. To make this point clearer, assume we
add the constraint that x < y and then deallocate y; the constraint x < y

should definitely remain. The second, implementation-specific removal happens
whenever an operation makes a formerly concrete memory location symbolic: it
this case we remove the concrete location from the writeset, since it will now
appear in the path constraints. The simplest example of such an operation is
assigning a symbolic value to a concrete location.

Callsite-aware caching. The state must also include some context-sensitive
notion of the current program point. Otherwise, the constraint cache entries for
a function generated from other callsites can cause us to falsely think we can
prune execution. Truncating path exploration when we get a cache hit is only
sound if the entire path suffix after the current program point is identical to
some previously explored one. This is only guaranteed when the current call



will return to the same callsites that generated the cache entry. For example,
consider a program that has calls to both of the following functions:

a() { b() {

c(); c();

} }

Assume the tool first follows a path that calls a, which will then call c, populating
c’s constraint cache. Subsequently, it follows a path that calls b and, hence, c. If
we ignore context, we may (incorrectly) get a cache hit in c on an entry added by
a, and stop execution, despite the fact that returning to the call in b can produce
a very different result with the current constraints than returning to the call in
a. Our implementation handles this problem by associating a secure MD4 hash
of the current callstack with each constraint cache entry. Other approaches are
also possible.

Granularity. Our cache tracks values at the byte level. One extreme would
be to track the values associated with each bit. While this adds more precision,
it was not clear the increase in bookkeeping was worth it. We could also choose
a more coarse-grained approach, such as tracking constraints at the variable or
memory object level, which would decrease the amount of bookkeeping, but un-
fortunately would miss many redundant paths, since often only some parts of a
memory object are dead, but not the entire object. We picked byte-level granu-
larity because it seems to be the right trade-off between memory consumption
and precision, and because it’s a straightforward match of C’s view of memory.

3.2 Live variables

We call the set of locations read after a program point the readset at that program
point; any value in the program state not in this set can be discarded. Thus, the
more precise (smaller) we can make the readset, the more irrelevant parts of the
current state we can discard and the more likely we are to get cache hits and
prune an exponential number of redundant paths.

One approach to computing the readset would be to use a static live variable
analysis. Unfortunately, doing so would be incredibly imprecise — for example,
often the heap contains most of the program state, which such an analysis typ-
ically gives up on. Instead, we compute the locations dynamically, which turns
out to be both cheap and very accurate. The basic algorithm is as follows. At a
given program point, we do a complete depth-first (DFS) traversal of all paths
after that point. The union of all values read by these paths is the readset for
that program point, and any part of the current state not observed by this read-
set can be discarded. As a simple but effective optimization, as we propagate
the readset backwards up each path, we remove from it all locations that are
deallocated or overwritten. For example, a read of z will be removed from the
readset if we hit an assignment to z.

The reader may be concerned about whether this algorithm is sound when
the DFS traversal does not achieve full branch coverage, such as when some path
constraints make some branches infeasible. For example, assume we traverse the
following code with the constraint that x 6= 12:



...

// after DFS from this point, the readset will be {x}

1: if(x == 12)

2: if(y == 34) // constraint x!=12 makes this branch unreachable

3: printf("hello\n");

... no further reads of x or y ...

In this case, we will never execute the branch at line 2, so y will not be in the
readset, and will be discarded from the current program state. Will this cause
us to discard states that could reach line 2? The answer is no: since x is in the
readset, the only states that will be discarded at line 2 are those that have an
equivalent set of constraints on x, i.e, those for which x 6= 12. But these states
don’t satisfy the branch at line 1 and so will not execute the branch at line 2
either. Recursively applying this argument can easily be used to formally prove
that the dynamic algorithm is sound even when it does not explore all branches.

3.3 Symbolic memory references

Symbolic memory references complicate both readset and writeset construction.
Assume we have an array reference a[i] where i is symbolic. If the only con-
straint on i is that it is in-bounds, a[i] can refer to any location in a. Even if
the constraints on i limit it to a narrow range, the cost of precisely determin-
ing this range (via expensive constraint solver interactions) often means that we
must accept imprecision. For reads, this imprecision inflates the readset in two
ways. First, we must conservatively assume a[i] can reference any location in a

unless we can prove otherwise. Thus, a single reference can pull all of a into the
readset. Second, when propagating the readset back up a path, when we hit an
assignment to a[i] we cannot remove any element from the readset unless we
can prove a[i] overwrites it. As a result, in our implementation, assignments to
arrays at symbolic offsets (indices) do not filter the readset at all.

Similarly, such assignments identically prevent removing elements from the
writeset. Recall that assigning a symbolic value to x causes x to be removed from
the writeset and added as a path constraint instead. However, when we assign
to a[i] we can only remove an element from the writeset if we can prove that
a[i] must overwrite it.

3.4 State refinement

Given a program state and a readset, we remove irrelevant parts of the program
state as follows:
1 Concrete state: keep the locations in the intersection of the readset and write-

set.
2 Symbolic state: keep the transitive closure of all constraints that overlap

with the readset. For example, if the readset is {x} and the current path
constraint is: {x < y, y < 10, z < w}, our transitive closure would be {x <

y, y < 10}. Note that taking the intersection instead of the transitive closure,
would produce constraint sets that allow solutions illegal in the original path
constraint.



3.5 Abstraction issues

For space reasons, we have currently taken a very literal view of what the pro-
gram state is, what reads and writes are, what is considered a cache hit, and
what the effects of a path are. One can, of course, profitably vary all of these,
depending on the requirements of the testing process. We consider two first-order
decisions.

First, what effects of computation are we interested in? The literal view is
everything. We can also consider things more abstractly. For example, one may
consider only the effects that affect branch coverage, or those that expose bugs
in the program. Deciding what effects to focus on determines what reads (or
writes) we must consider: if a read cannot affect the given metric, then the read
can be ignored. For example, if we are aiming for branch coverage, we can ignore
all reads not involved in an eventual control dependency.

Second, what is a cache hit? Thus far we have assumed two states are equal
if they match exactly. We can however, improve on this definition. One sound
improvement is to notice that two sets of constraints are equal if they would
cause the same effect. For example, if one path has x < 10 and another x < 20
and the only subsequent use of x is a branch comparison x < 30, then we could
consider these two constraints to be equal since they both satisfy the condition.

3.6 Summary

We now summarize the basic RWset implementation in EXE. We represent the
symbolic state by the current path constraint, the concrete state by the writeset,
and the program point by the callstack and program counter. Each context-
sensitive program point records all previous states it has been visited in, and
associates with each of these entries the complete set of reads (observations) done
by all subsequent paths when reached in this state (the readset). We determine
if we have already seen a state by comparing it against each of these entries
after first intersecting it with the entry’s associated readset. If we get a hit, we
generate a test case (to exercise the path up to this point) and terminate further
exploration of this path. Otherwise we continue.

4 Evaluation

This section evaluates the effectiveness of RWset analysis on real code, using a
mix of server and library code and operating system device drivers. The results
show that the technique gives an order of magnitude reduction in the number of
tests needed to reach the same number of branches, and often achieves branch
coverage out-of-reach for the base version of EXE. All experiments were per-
formed on a dual-core 3.2 GHz Intel Pentium D machine with 2 GB of RAM,
and 2048 KB of cache.



4.1 Server and library code

Our first experiments measure the improvement given by RWset analysis on
five medium-sized open-source benchmarks previously used to evaluate the base
version of EXE [4]: bpf, the Berkeley Packet Filter; udhcpd, a DHCPD server;
expat, an XML parser library; tcpdump, a tool for printing out headers of net-
work packets matching a boolean expression; and pcre, the Perl Compatible
Regular Expression library.

We ran each of these benchmarks for roughly 30 minutes each with the base
version of EXE, and recorded: (1) the (maximum) branch coverage achieved,
and (2) how many test cases were necessary to achieve this coverage (note that
sometimes we generate more than this number of test cases in 30 minutes, but
the extra tests don’t hit any new branches). The one exception was PCRE, which
we ran longer until it generated 30,000 test cases in order to have a meaningful
comparison between the base and RWset versions. The second column of Table 2
gives the number of branches hit by these runs and the third column gives the
number of test cases.

We then reran each benchmark using the RWset version of EXE and recorded
the number of test cases necessary to achieve the same coverage as the base
version did in half an hour. The last column of Table 2 gives the percentage of
test cases needed for the RWset version to match the coverage from the base
run. As the table shows, the improvement can be substantial: tcpdump only needs
11.4% the number of test cases to get equivalent coverage (249 vs 2175 tests)
and bpf needs 16%. In fact, with the exception of pcre, all benchmarks need
less than half the number of test cases with the RWset version.

We also measured the number of distinct states visited by the RWset version
relative to the base. The graphs, shown in Figure 3, indicate that without RWset
analysis the system wastes enormous resources constantly revisiting redundant
states, thus generating many irrelevant test cases.

Base RWset
Branches Tests % tests needed

tcpdump 123 2175 11.4%
bpf 171 6333 16.2%
expat 472 677 31.1%
udhcpd 166 225 49.7%
pcre 1268 26,596 72.2%

Table 2: Number of tests in RWset mode necessary to achieve the same coverage as in
the base system.

Finally, we measured the runtime overhead of our RWset implementation by
running an EXE version that performs all computations RWset requires (con-
structing readsets and writesets, checking for cache hits), but without pruning
any paths. Thus, this version generates exactly the same tests as the base version
of EXE, while paying the full cost of RWset analysis. Our measurements show
that for all benchmarks the average overhead is at most 4.38%.
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Fig. 3: Distinct explored states over number of test cases for the base system versus
the RWset version for the server and library code benchmarks. With the exception
of PCRE, the base system without RWset wastes much of it time exploring provably
redundant states.

4.2 Device drivers

We also checked OS-level code by applying EXE to three Minix device drivers.
Minix 3 [16, 10], is an open source, Unix-like, microkernel-based operating sys-
tem, with a kernel of under 4000 lines of code, and almost all functionality –
including device drives – running in user space. 1

Drivers make up the bulk of modern operating systems and are notoriously
buggy [1, 15]. Drivers are an interesting case for systems such as EXE because,
while drivers ostensibly require a physical version of the device they are intended
to drive, they only interact with the device through memory-mapped I/O, which
mechanically looks like a memory array with special read and write semantics.
Thus, we can effectively test a driver by marking this array as symbolic and
running the driver inside our symbolic environment.

The Minix driver interface makes this approach easy to apply. Minix drivers
are built as standalone processes that use a small message-passing interface to
communicate with the rest of the system. Their organization mirrors that of
many network servers: a main dispatch loop that waits for incoming messages
from other processes, the kernel or the hardware (the kernel translates hardware
interrupts into messages as well) and processes the incoming requests. Thus,
applying EXE to these drivers was relatively easy: for each read the driver does,
we just return a symbolic message.

1 We have a lot of experience checking Linux drivers but switched to Minix because
of the first author’s affiliation with the Minix group. We do not expect our results
to change for Linux.
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Fig. 4: Branch coverage (in percentage) over the number of test cases generated for the
device drivers, comparing the base version of EXE and the RWset version with and
without the use of readsets. In the first two cases, the full RWset system quickly gets
branch coverage dramatically beyond that of the base system or writeset alone.
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Fig. 5: Distinct explored states over number of test cases generated for the device
drivers, comparing the base and the RWset versions of EXE. As with the server exper-
iments, RWset typically both explores many more distinct states than the base system
and does so very quickly.

We made two modifications to the driver code. First, we performed simple
“downscaling,” such as reducing data buffer sizes, which only required changing
a few constant values in header files. Second, we fixed the number of iterations in
the dispatch loop and limited the search depth (expressed in number of symbolic
branches). These latter changes were needed in order to do a better comparison
between the base and the RWset versions of EXE. Without them, the base
version gets stuck in infinite cycles. As a result of these changes, our experiments
underestimate the improvement given by the RWset technique.

We run each device driver for one hour in three modes. As before, we use
the base and the RWset versions of EXE. In addition, we also measure the
effectiveness of using the readset to filter irrelevant state details by disabling
this step and only pruning paths when states are exactly equal (writeset).

We statically counted the total number of branches in each driver (using a
compiler pass) and then, for the three runs, recorded the branches hit by each
generated test case. Figure 4 uses this data to plot the cumulative percentage of
code branches covered by the given number of test cases. As the figure shows: (1)
the RWset version outperforms the base version and (2) a lot of this improvement
comes from the readset filtering. For lance and pci, the base version keeps
visiting the same branches, and cannot achieve more than 40% branch coverage



in the first hour. In the case of sb16, the base version does not fare as poorly,
although it still doesn’t achieve as much coverage as the RWset version.

Figure 5 shows the number of distinct states visited by the base and the
RWset versions of EXE. The most striking feature of the graph is how quickly
the base version gets stuck, repeatedly visiting states that are provably the same
and thus generating large numbers of redundant test cases.

While testing these device drivers, we also checked for bugs. Unsurprisingly,
the bug count improves with the amount of branch coverage achieved. While we
only looked for simple low-level errors (such as assert() failures, null pointer
dereferences, buffer overflows and out-of-bounds errors) the RWset version still
found thirteen unique, confirmed bugs. On the other hand, the base version of
EXE missed all but four of these.

5 Related Work

The idea for RWset was inspired by two bug-finding systems the authors were
involved with [9, 18]. The first system [9] statically found bugs by pushing user-
written compiler extensions down all paths in a checked program. For scalability,
it tracked the internal state of these checkers and stopped exploring paths when
a basic block was revisited in the same state. We reused this caching idea to
do path truncation dynamically. In retrospect, adding a variation of the readset
calculation presented in this paper would have likely made a big improvement
in this static system since it would allow it to discard many more paths in a
simple way, and transparently scale up with the power of any underlying path-
sensitivity added to the system. The second system [18] provided the idea of using
read and write sets when computing state equivalence. It dynamically computed
such information in terms of the disk blocks a file system repair program read
and wrote as a way to determine when crashing and restarting such a program
during repair would compute identical results to not crashing. The use of read
and write sets let it save enormous amounts of work, leading us to try a similar
approach for memory (rather than disk) in our more general checking context.

Recent work on constraint-based execution tools have approached the path
explosion problem in a variety of ways. Two methods that use heuristics to
guide path exploration are [4] (which attempts to explore paths that hit less-
often executed statements) and [13] (which combines symbolic execution with
random testing). We view these techniques as largely complementary to the
RWset analysis: one can use RWset analysis to discard irrelevant paths and then
use these techniques to prioritize the residue.

Another approach, which like RWset analysis uses a static analysis-inspired
technique to attack path explosion, tests code compositionally by reusing func-
tion summaries [7]. Roughly speaking, it does a bottom-up analysis that records
the result of analyzing a function at a given callsite and, if it encounters another
call to the same function with the same inputs, reuses the result of this analysis.
If we regard program suffixes as functions taking as arguments the current state
of the program, then [7] becomes equivalent to our RWSet technique without



the readset refinement. We believe the function summary approach could also
use a variation of readsets to prune out irrelevant details, and thus both get
more summary hits and remove unneeded path constraints.

More generally, the idea of pruning equivalent states is an old one and has
shown up in many different situations. A context closely related to ours is the
use of state caching in explicit state model checking (e.g., [17]), which tracks
the states generated by an abstract model of a system and does not explore
the successors of an already-seen state. State caching is often improved through
dead variable elimination. In most systems, this is accomplished by running a
standard static live variable analysis before model checking begins, as in SPIN
and Bebop [11, 2]. In [12], the system uses runtime information to eliminate
infeasible paths at various points in the program in order to improve the results
of the static live variable analysis. While such pruning helps, we expect the
significant imprecision inherent to a static live variable forces this approach to
miss many pruning opportunities. However, comparing the two techniques is
hard as the benchmarks used in [12] seem to be on the order of a hundred lines
of code or less, with at most three loops per program.

We note that while in hindsight it may appear clear that state caching is
worth applying to constraint-based tools, the context seems different enough
that, while all authors of such tools that we talked to complained about the
path explosion problem, no one suggested using a state-caching approach.

A final model checking technique related to RWset analysis is partial order

reduction [6], which skips redundant states by exploiting the fact that if two ac-
tions are independent then the order in which they occur does not matter. The
two approaches should work well together: partial order reduction is a “horizon-
tal” approach that eliminates path interleavings, while the RWset technique is
a “vertical” one that truncates the remaining paths.

6 Conclusion

While constraint-based execution is a promising approach for automatically gen-
erating test cases to cover all program paths, it faces significant scalability chal-
lenges for checking large applications. This paper introduces RWset analysis, a
technique for detecting and pruning large numbers of redundant paths. RWset
analysis tracks all the reads and writes performed by the checked program and
uses this information to truncate a path as soon as it determines that the path
will execute equivalently to some previously explored one.

We measured the effectiveness of our RWset implementation by applying it
to server, library, and device driver code. Our results show that RWset analysis
can reduce the tests needed to reach a given number of branches by an order of
magnitude, and often achieves branch coverage out-of-reach for the base version
of the system, which easily gets stuck revisiting provably redundant states.
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