
Symbolic Testing of OpenCL Code

Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly
{peter.collingbourne03, c.cadar, p.kelly}@imperial.ac.uk

Department of Computing
Imperial College London

Abstract. We present an effective technique for crosschecking a C or
C++ program against an accelerated OpenCL version, as well as a tech-
nique for detecting data races in OpenCL programs. Our techniques are
implemented in KLEE-CL, a symbolic execution engine based on KLEE
and KLEE-FP that supports symbolic reasoning on the equivalence be-
tween symbolic values.
Our approach is to symbolically model the OpenCL environment using
an OpenCL runtime library targeted to symbolic execution. Using this
model we are able to run OpenCL programs symbolically, keeping track
of memory accesses for the purpose of race detection. We then compare
the symbolic result against the plain C or C++ implementation in order
to detect mismatches between the two versions.
We applied KLEE-CL to the Parboil benchmark suite, the Bullet physics
library and the OP2 library, in which we were able to find a total of seven
errors: two mismatches between the OpenCL and C implementations,
three memory errors, one OpenCL compiler bug and one race condition.

1 Introduction

The Open Computing Language (OpenCL) [12] is an open standard for parallel
computing architectures, such as Graphics Processing Units (GPUs). OpenCL
includes a C API which provides the means for a developer to execute computa-
tional kernels in parallel on an OpenCL compatible device. Kernels are written
in a variant of ISO C99 [11] referred to as OpenCL C.

The fundamental unit of execution in OpenCL is the work-item, which rep-
resents a single invocation of a specified kernel function. A kernel invocation
constitutes the parallel execution of a set of work-items, optionally organised
into work-groups, which can share common resources such as local memory.
Each work-item conceptually resides at a point in the kernel invocation’s it-
eration space, referred to as the n-dimensional range, or NDRange. Data-level
parallelism is achieved by having the kernel function vary the data items accessed
depending on the position of the work-item in the iteration space. Figure 1 shows
an example of how work-item functions can be used for this purpose.

The translation of an existing C or C++ program to OpenCL can be a com-
plex process, especially for those unfamiliar with the concurrency model and the
relevant APIs. In the end, the developer has little confidence that their trans-
lated OpenCL code is equivalent to the original C or C++ code. Neither can the

2

i = get_global_id(0),

j = get_global_id(1);

y[j]

x[i]

i=0,
j=0 j=0

i=1,

i=0,
j=1

Array x

Array y

Kernel NDRange

Fig. 1. Using a 2-dimensional NDRange iteration space to vary the data items accessed.

developer easily determine that their code is compliant with the OpenCL spec-
ification, because he or she may unknowingly be using undocumented quirks
of their particular implementation. For example, memory is generally not re-
quired to be consistent across work-items [12, § 3.3.1], and the actual behaviour
generally depends on the underlying hardware memory model.

This paper presents a crosschecking and data race detection technique for
OpenCL programs. Our approach is based on symbolic execution [13], which
provides a systematic way of exploring all feasible paths in a program for inputs
up to a certain size. On each explored path, our technique works by building
the symbolic expressions associated with the C/C++ and OpenCL versions of
the code, and proving their equivalence. During symbolic execution of OpenCL
kernels, we also maintain a log of all memory accesses for use in race detection.
We build on earlier work [5], in which we extended the KLEE symbolic execution
engine with support for crosschecking floating point and SIMD code.

This paper makes the following contributions:

1. We present a symbolic execution based technique for crosschecking OpenCL
programs against their original C or C++ implementations.

2. We present a technique for testing for the presence of data races in OpenCL
programs using a memory access log.

3. We describe KLEE-CL, an open-source tool that implements our technique
by extending KLEE-FP [5] (itself an extension to the open source symbolic
execution tool KLEE) with a model of the OpenCL runtime library and our
race detection algorithm.

4. We evaluate KLEE-CL by applying it to three Parboil benchmarks, the Bul-
let physics library and the OP2 library, and show that it can find real bugs,
including memory errors, race conditions, and implementation mismatches.

2 Overview

Our approach for testing OpenCL code is illustrated graphically in Figure 2.
Given an OpenCL and a C/C++ implementation of a given routine, our tech-
nique uses symbolic execution to explore all feasible pairs of paths (or as many
as possible in a given time budget) through the given implementations (§3.1).

3

Mismatch found
equivalent?

Paths

conflict?

Access

Report race

Execute path

OpenCL C Compiler

(clang)

clBuildProgram

Yes

No

Memory Access

Choose (C/C++ path,

OpenCL path)

All paths equivalent

C/C++ Compiler

(llvm−gcc/clang)

No

No more paths

Yes, choose another path

Symbolic Execution Engine

C/C++ code

OpenCL runtime code

Test harness

Fig. 2. Architecture diagram for KLEE-CL.

Then, on each explored path it (1) symbolically checks whether the two imple-
mentations compute equivalent outputs (§3.2) and (2) checks whether there are
any race conditions (§5). In order to be able to reason about OpenCL code, our
technique implements a symbolic OpenCL model (§4).

To illustrate the main features of our technique, we walk the reader through a
simple example in which we check the equivalence between a C and an OpenCL
implementation of a simple routine. The code example shown in Listing 1 con-
tains a function called cpu arr sqrt, a C implementation of a function that
computes the square root of every element of an array in, storing it into an
array out; as well as gpu arr sqrt, an OpenCL implementation of the same
function that makes use of the OpenCL kernel arr sqrt kern.

Like the C implementation, gpu arr sqrt takes as arguments the input and
output arrays in and out and their size size. However, gpu arr sqrt receives
three additional arguments: a context, which is used to execute kernels on one
or more devices and to manage objects such as memory and kernel objects; a
command queue, which is created on a specific device and is used to enqueue
OpenCL commands to be executed by the device; and kernel, which represents
the function to be executed on the device (in our case arr sqrt kern).

In order to run the arr sqrt kern kernel, the code first creates two memory
buffer objects, in buf and out buf, which represent memory allocated on the
device. The memory buffer objects are set up such that OpenCL will copy data
between the host and the device when necessary (i.e. in will be copied to in buf

before kernel execution, and out buf to out after execution).

On line 11 the code sets the first kernel function argument to out buf, and on
line 12 the second to in buf. Then on line 14 it calls clEnqueueNDRangeKernel,

4

1 kernel void a r r s q r t k e r n (global f loat ∗out ,
2 global const f loat ∗ in) {
3 s i ze t i = g e t g l o b a l i d (0) ;
4 out [i] = sq r t (in [i]) ;
5 }
6
7 void gpu a r r s q r t (c l c on t e x t context ,
8 cl command queue cmd queue , c l k e r n e l kerne l ,
9 f loat ∗out , const f loat ∗ in , s i ze t s i z e) {

10 /∗ I n i t i a l i s a t i o n of in bu f and out bu f : omitted ∗/
11 c lSetKerne lArg (kerne l , 0 , s izeof (cl mem) , &out buf) ;
12 c lSetKerne lArg (kerne l , 1 , s izeof (cl mem) , &in bu f) ;
13
14 clEnqueueNDRangeKernel (cmd queue , kerne l ,
15 /∗ work dim ∗/ 1 ,
16 /∗ g l o b a l wo r k o f f s e t ∗/ NULL,
17 /∗ g l o ba l wo r k s i z e ∗/ &s i z e ,
18 NULL, 0 , NULL, NULL) ;
19
20 c lF i n i s h (cmd queue) ;
21 }
22
23 void cpu a r r s q r t (f loat ∗out , const f loat ∗ in , s i ze t s i z e) {
24 for (s i ze t i = 0 ; i != s i z e ; ++i)
25 out [i] = sq r t (in [i]) ;
26 }
27
28 int main (void) {
29 f loat in [6 4] , cpuout [6 4] , gpuout [6 4] ;
30 u in t 32 t ∗ cpuout i = (u in t 32 t ∗) cpuout ;
31 u in t 32 t ∗ gpuouti = (u in t 32 t ∗) gpuout ;
32 k lee make symbol ic (in , s izeof (in) , ” in ”) ;
33
34 cpu a r r s q r t (cpuout , in , 6 4) ;
35
36 /∗ I n i t i a l i s a t i o n of context , cq , kerne l : omitted ∗/
37 gpu a r r s q r t (context , cq , kerne l , gpuout , in , 6 4) ;
38
39 for (s i ze t i = 0 ; i != 64 ; ++i)
40 a s s e r t (gpuouti [i] == cpuout i [i]) ;
41 }

Listing 1. A simple test benchmark.

which schedules the execution of arr sqrt kern on the device. Finally on line 20
it calls clFinish, which blocks until kernel execution terminates.

The call to clEnqueueNDRangeKernel specifies the bounds of an implicit
parallel loop around a call to arr sqrt kern. In this case, the work dim argument
is set to 1, so the loop has one dimension; global work size is a pointer to size,
so the loop will have size iterations; and global work offset is NULL, so the
lower bound of the loop index is 0.

The arr sqrt kern kernel function implements one iteration of the loop
found in cpu arr sqrt. The get global id(0) function call on line 3 is used to
retrieve the loop index, which indexes the in and out arrays in the same way as
the loop index i in cpu arr sqrt. As with cpu arr sqrt, the loop index ranges
between 0 and size-1 due to the loop bounds specified by the arguments to
clEnqueueNDRangeKernel.

5

The main function constitutes the test harness, which is similar to the ones
used to crosscheck scalar and SIMD implementations in KLEE-FP [5]. In order
to use our KLEE-CL tool, developers have to identify the C/C++ and the
OpenCL versions of the code being compared, and the inputs and outputs to
these routines. In our example, we have one input, namely the array in. Thus,
the first step is to mark this array as symbolic, meaning that its elements could
initially have any value (see §3.1 for more details). This is accomplished on line 32
by calling the function klee make symbolic() provided by KLEE, which takes
three arguments: the address of the memory region to be made symbolic, its
size in bytes, and a name used for debugging purposes only. Then, on line 34
we call the C version of the code and store the result in cpuout, and on line 37
we call the OpenCL version and store the result in gpuout (the initialisation
of the parameters context, cq and kernel are omitted for brevity). Finally,
on lines 39–40 each element of gpuout is compared against the corresponding
element of cpuout. As in KLEE-FP, we use bitcasting to integers via the pointers
gpuouti and cpuouti for a bitwise comparison. This is necessary because in the
presence of NaN (Not a Number) values, the C floating point comparison operator
== does not always return true if its floating-point operands are the same, as
distinguished from a bitwise comparison.

3 Crosschecking of OpenCL and C Implementations

Our technique uses symbolic execution to explore multiple paths through the
OpenCL and C/C++ implementations being compared, in order to check, on
each path, for output equivalence (§3.2) and race conditions (§5).

3.1 Symbolic Execution

At a high level, symbolic execution is a technique that allows the automatic
exploration of paths in a program. It works by executing the program on symbolic
input, which is initially unconstrained. As the programs runs, any operations
that depend on the symbolic input add constraints on the input. For example,
if the program input is represented by variable x, than the statement y = x+3

would add the constraint that y = x+ 3. Furthermore, whenever a branch that
depends on the symbolic input is reached, the technique first checks if both sides
are feasible, and if so, it forks execution and follows each side separately, adding
the constraint that the branch condition is true on the true side and false on the
other side. For example, given the symbolic input x, where x is unconstrained,
the symbolic execution of the branch if (x == 3) would result in two paths
being explored, one on which x = 3 and one on which x 6= 3.

In our work, we use symbolic execution to explore the different paths in the
OpenCL and C/C++ implementations being tested, and for each pair of paths,
we check whether (1) there are no memory errors (these checks are by default
performed by KLEE); (2) the implementations are race free (§5) and (3) the
outputs computed by the two implementations are equivalent (§3.2).

6

One fundamental limitation of symbolic execution is that it only handles
objects of fixed size (e.g., each data structure in a program usually has to be
assigned a concrete size, as in the normal execution of the program). For our
work, this means that we can verify the equivalence of OpenCL and C/C++
programs only up to a certain input size and number of threads. In the rest of
the paper, we discuss our experiments solely in terms of input size: this is because
in a typical OpenCL program, the number of work-items depends linearly on the
size of the input being processed.

3.2 Equivalence Checking

To verify the output equivalence on a pair of paths through the two implemen-
tations, our technique first constructs the symbolic expressions corresponding
to the output of each implementation, applies a set of canonicalisation rules to
bring the two expressions to a canonical form, and then compares the two ex-
pressions syntactically. The main advantages of this approach are performance
and the ability to deal with floating-point expressions, for which there are no
efficient constraint solvers currently available. On the other hand, this approach
is prone to false positives, i.e., it can say that two expressions are not equivalent
when in fact they are. For more details, we refer the reader to our previous work
on KLEE-FP [5].

In addition to the canonicalisation rules already implemented in KLEE-FP,
we added a set of new rules, some of which rely on certain assumptions about
the floating point model. For example, it is generally unsound to simplify x× 0
to 0 because if x is negative or infinite the result is respectively −0 or NaN.
However, developers are often not interested in such edge cases, and therefore
we added the option to enable such assumptions on demand (via command line
arguments). We added a total of three assumptions with five associated rules:

– The positive zero assumption allows the simplifier to disregard the difference
between positive and negative zero, which is usually inconsequential. If this
assumption is enabled, x+ 0 may be simplified to x.

– The finite assumption allows the simplifier to assume all results are finite. If
this assumption together with the positive zero assumption is enabled, x×0
and 0× x may be simplified to 0.

– The associativity assumption allows the simplifier to assume that floating
point operations are associative. If this assumption is enabled, + and ×
operations are rearranged to be left-associative, so x+ (y+ z) is normalised
to (x+ y) + z and x× (y × z) to (x× y)× z.

We also added two rules which do not rely on any assumptions being enabled.
These rules allow x× 1 and 1× x to be simplified to x.

4 Modelling the OpenCL Environment

Our OpenCL model presents a single OpenCL compliant device to the program
under test. This device presents itself as a CPU-based device with support for the

7

cl khr fp64 extension, which allows the kernel to use double-precision floating
point arithmetic.

The OpenCL model is made up of two distinct parts: the runtime library,
which is used by the host to manage the execution of OpenCL kernels, and the
OpenCL C environment, which models the execution of a kernel on the device.

4.1 The OpenCL Runtime

The OpenCL runtime library is specified by two sections of the OpenCL specifi-
cation: the OpenCL Platform Layer [12, § 4] and the OpenCL Runtime [12, § 5].
The Platform Layer is used to query the set of available OpenCL devices, while
the Runtime is used to query and manipulate objects on a specific device or set
of devices such as device-side memory buffers and compiled OpenCL programs.
In total, our model implements 30 functions specified as part of the Platform
Layer and Runtime. For example, the clEnqueueNDRangeKernel function dis-
cussed in Section 2 is implemented by starting one modelled POSIX thread for
each work-item in the iteration space. Each thread sets up the environment ap-
propriately (for example, by initialising thread local variables) and then calls
the kernel function. In our implementation, we use the POSIX threading model
added to KLEE by Cloud9 [2].

4.2 The OpenCL C Programming Language

OpenCL kernels are written in an extended version of ISO C99 [11] referred to
as OpenCL C, which is specified as part of the OpenCL specification [12, § 6].
Among the language extensions provided by OpenCL C are vector data types,
specialised memory address spaces and a set of built-in functions.

The vector data types provided by OpenCL are used to exploit the SIMD
capabilities common among GPUs. For example, float4 is the name of a data
type referring to a vector of four float values. KLEE-FP, which our technique
extends, already includes support for vector data types [5].

The four disjoint address spaces provided by OpenCL are named global,
local, constant and private. Globally available data resides in global,

data local to a work-group in local, read-only data in constant and function
arguments and local variables in private.

Three of these address spaces (global, constant and private) can be
modelled using the generic address space used by regular CPU implementations.
The local address space, however, needs special attention because local

data must be shared between work-items in the same work-group, and each
work-group must have its own local data. To model local, we added a
group-local address space, which is an address space shared between user-created
thread groups. Each thread belongs to a single thread group. Before beginning
kernel execution, we create one thread group for each work-group, and set each
thread’s group to match its work-group.

Our model implements 18 of the built-in functions specified by the OpenCL
specification, which are enough to run our benchmarks. These include work-item

8

functions, which are used by the kernel to query various properties of the cur-
rent execution’s index space; math functions, which perform various mathemat-
ical operations (including vectorised variants); and the barrier synchronisation
function, which is used to introduce execution barriers into the kernel.

4.3 Runtime Compilation of OpenCL Kernels

Programs that use the OpenCL runtime library (written in languages such as C
or C++) are compiled in the usual way, before they are run. By contrast, kernels
written in OpenCL C are normally compiled at runtime by passing their source
code as a string to the runtime library function clCreateProgramWithSource,
and later compiling the program using the clBuildProgram function. This can
pose a challenge for tools such as ours, which necessarily must incorporate a full
OpenCL C compiler. Our implementation of clBuildProgram invokes a compiler
based on the OpenCL C front-end provided by the Clang [3] compiler. Clang is
designed to be used as a library, which made it easy to integrate into KLEE-CL.
Clang produces an LLVM [14] module representing the compiled program which
is then dynamically loaded into the current instance of KLEE-CL.

5 Race Detection

Our model implements race detection capable of detecting, on each path ex-
plored, read-write and write-write races across work-items. Note that our analy-
sis is targeted towards detecting races between work-items in the same NDRange.
In OpenCL, a command queue may be created in out-of-order mode [12, § 5.11].
By scheduling multiple kernel invocations on an out-of-order command queue,
or by scheduling kernel invocations across multiple command queues, a client
program may cause kernel NDRanges to run in parallel such that races may oc-
cur between NDRanges. In this work, we concern ourselves only with the more
common in-order case where only one NDRange is executing at a time.

To detect data races, we keep for each byte in the generic and group-local
address spaces a memory access record (MAR) of accesses to that byte by a work-
item thread. Each item in the MAR consists of the thread identifier of the most
recent work-item to access the byte, the work-group identifier of the most recent
work-group to access the byte, and four flags indicating whether the byte was
(1) written by one or more work-items, (2) read by one or more work-items, (3)
read by multiple work-items (many-read), and (4) read by multiple work-groups
(wg-many-read).

The MAR may be stored concretely or symbolically. The concrete represen-
tation of the MAR is an array of structs, each holding the MAR for one byte
in the array. The symbolic representation of the MAR is a set of 6 symbolic
arrays, each as large as the underlying array, and each representing one of the
MAR attributes. For efficiency we store the MARs concretely by default, but
if a symbolically indexed memory access is performed, the array’s MARs are
converted to the symbolic representation.

9

Read
write[index] ∧ threadId[index] 6= threadId ∧ wgid[index] 6= wgid

manyRead[index] ← manyRead[index] ∨ (read[index] ∧ threadId[index] 6= 0 ∧
threadId[index] 6= threadId)

wgManyRead[index] ← wgManyRead[index] ∨ (read[index] ∧ wgid[index] 6= wgid)
threadId[index] ← threadId wgid[index] ← wgid

read[index] ← >

Write
manyRead[index] ∨ wgManyRead[index] ∨ ((read[index] ∨ write[index]) ∧ threadId[index] 6=
threadId ∧ wgid[index] 6= wgid)

threadId[index] ← threadId wgid[index] ← wgId
write[index] ← >

Fig. 3. Race condition test and MAR updates.

Whenever a memory access occurs, the MAR is inspected for any race con-
ditions, and then updated. A race condition can be a read-after-write, a write-
after-write or a write-after-read performed by a work-item or work-group other
than that identified by the corresponding entry in the MAR, or any write-after-
read if either of the many-read or wg-many-read flags are set.

The race condition test, together with the required MAR updates, are shown
in Figure 3. If the MAR is being stored concretely, we perform the test and
the MAR updates directly. If the MAR is being stored symbolically, the test is
performed by querying the constraint solver as to whether the symbolic expres-
sion representing the race condition test is feasible, and the MAR updates are
performed by appending an update to the symbolic arrays.

The main intra-work-group synchronisation mechanism provided by OpenCL
C is the barrier function, which acts as an execution barrier. barrier blocks
until all work-items in the work-group have reached the call to barrier, at
which point a memory fence is queued to ensure the correct ordering of memory
operations between work-items, and all work-items resume execution.

To simulate this behaviour, when a work-item reaches a barrier we add it to a
list of blocked work-items associated with the current work-group. When the size
of this list becomes as large as the number of work-items in the work-group, the
MAR is locally reset and the list emptied, resuming execution. We locally reset
the MAR by removing the work-item identifier and clearing the many-read flag of
each MAR whose work-group identifier matches the work-group performing the
barrier. This has the effect of causing no intra-work-group accesses across the
reset to be considered a race, while preserving inter-work-group race detection.

At the end of the execution of a kernel, we must perform a full reset of
the MAR, to prevent access records from one kernel invocation from interfering
with accesses from subsequent invocations (since we only support in-order kernel
invocation, it is safe to do this). Similar to the case when a barrier is reached,
we add the kernel to a list of inactive work-items, which is this time associated
with the entire NDRange. When the list size becomes as large as the size of the
NDRange, we reset the MAR by removing all identifiers and clearing all flags,
and then resume execution.

To illustrate the race detection technique described above, we use the code
in Figure 4. This code contains two simple kernels, avg and avg2, the purpose

10

Work-item 1 Work-item 2
1 kernel void avg(global float ∗a) { Tid Wid R W Con Tid Wid R W Con
2 size t lid = get local id (0), 1 1 X X
3 lsize = get local size (0); 1 1 X X
4 float r0 = lid > 0 ? a[lid−1] : 0; 1 1 X X w/r
5 float r1 = a[lid]; 1 1 X 1 1 X X
6 float r2 = lid+1 < lsize ? a[lid+1] : 0; 1 1 X 1 1 X X
7 a[lid] = (r0 + r1 + r2) / 3; 1 1 X X 1 1 X X
8 }

Work-item 1 Work-item 2
1 kernel void avg2(global float ∗a) { Tid Wid R W Con Tid Wid R W Con
2 size t lid = get local id (0), 1 1 X
3 lsize = get local size (0); 1 1 X
4 float r0 = lid > 0 ? a[lid−1] : 0; 1 1 X
5 float r1 = a[lid]; 1 1 X 1 1 X
6 float r2 = lid+1 < lsize ? a[lid+1] : 0; 1 1 X 1 1 X
7 barrier (CLK GLOBAL MEM FENCE); 1 X 1 1 X X
8 a[lid] = (r0 + r1 + r2) / 3; 1 1 X X 1 1 X X
9 }

Fig. 4. Intermediate MARs for the memory location at a[0] during execution of work-
items 1 and 2. Column Tid shows the byte’s work-item identifier, Wid its work-group
identifier, R the read flag, W the write flag, and Con (if present) the nature of the
conflict detected at that line. Note that the many-read and wg-many-read flags are not
shown here.

of which is to store in each element of array a the mean of that element and the
two adjacent elements.

The avg kernel contains a race condition, while avg2 uses an execution barrier
to avoid the race. For each statement in the kernels, we show alongside it the state
of the MAR for the first element of array a after execution of that statement.
Note that in KLEE-CL we execute each work-item in its entirety until it reaches
an execution barrier or terminates; however, our race detection algorithm would
work with any other execution schedule. Thus, for avg the entirety of work-item
1 is executed before work-item 2, and the MAR persists from the end of execution
of work-item 1 to the beginning of execution of work-item 2. For avg2 the first
five lines of work-item 1 are executed (up to the barrier), then the first five lines
of work-item 2, the memory access records are locally reset, the last two lines of
work-item 1 are executed and finally the last two lines of work-item 2.

On line 4 of avg in work-item 2, we report a read-after-write race. This is
due to the earlier write of work-item 1 on line 7 causing the write flag to be set.
This race does not exist in avg2 because on line 4 of avg2 in work-item 2, line
8 in work-item 1 had not yet been reached, as it had been preempted by the
barrier on line 7.

6 Evaluation

We evaluated our technique on a set of benchmarks that compare C/C++ and
OpenCL variants of code developed independently by third parties. The code-
bases that we selected were the Parboil benchmark suite [10], the Bullet physics
library [6] and the OP2 [8] library.

11

6.1 Parboil

Parboil [10] is a popular GPU benchmark suite, which contains C and CUDA [18]
implementations of various algorithms. In order to be able to run Parboil bench-
marks using KLEE-FP, we used Grewe et al’s [9] translation of certain Parboil 1
benchmarks from CUDA to OpenCL. The translation comprised four bench-
marks in total, and we tested three of these: cp (Coulombic Potential), mri-q
(Magnetic Resonance Imaging – Q) and mri-fhd (Magnetic Resonance Imaging
– FHD). We were unable to test the fourth benchmark, rpes (Rys Polynomial
Equation Solver) because it created a very large number of work-items (> 30000)
even for small problems, which KLEE-CL could not execute in a reasonable
amount of time.

We modified the code for each benchmark to incorporate the C and OpenCL
versions of the benchmarks into the same executable. This allowed us to con-
struct simple test harnesses similar to the one in Listing 1 which invoke both
versions of the benchmarks with the same symbolic arguments.

By running these benchmark programs using KLEE-CL, we detected two
mismatches between the C and OpenCL implementations of cp. We also found
three memory errors in mri-q and mri-fhd as a result of the memory bounds
checking performed during symbolic execution.

Mismatches: The cp benchmark computes the Coulombic potential for a
set of points on a grid. The computation of a Coulombic potential at a grid point
involves the calculation of the Euclidean distance of the form

√
δx2 + δy2 + δz2

between an electrically charged particle and that point.
The first mismatch for cp is due to an associativity issue. The OpenCL

implementation uses an unrolled loop in which a set of adjacent grid points are
computed during each iteration. Because only the x coordinate varies during
an iteration, the values of δy and δz remain constant, allowing δy2 + δz2 to
be precomputed at the start of each iteration. So the expression is evaluated
as

√
δx2 + (δy2 + δz2). In the C implementation, the inner expression is left

unbracketed and normal C associativity rules apply. Because + is left-associative
in C [11], the expression is evaluated as

√
(δx2 + δy2) + δz2. Since + in floating

point is not associative, the two expressions do not match.
The second mismatch arises in the context of computing δx in the two im-

plementations. In the C implementation, this is done by subtracting the atom’s
x coordinate from the grid’s x coordinate. In the OpenCL implementation, δx
for the iteration’s first grid point is computed in the same way. However, for
subsequent points in the iteration, δx is computed by adding the grid’s spacing
to the value of δx for the previous point. Since floating point + and × are neither
associative nor distributive, the expressions do not match.

Whether these mismatches are important or not depends on the specific appli-
cation. KLEE-CL’s job is to flag such mismatches, but it is up to the developer
to assess whether strict equivalence should be enforced. Furthermore, developers
can use the assumptions discussed in Section 3.2 to ignore the cause of differ-
ent mismatches. For the current example, developers could add the assumption
that floating point operations are associative and rerun KLEE-CL to find other

12

problems. With this assumption enabled, KLEE-CL verifies a variant of this
benchmark in which the second mismatch, but not the first, has been fixed.

Memory errors: A non-obvious memory error was found in mri-q. After
the OpenCL kernel is invoked, mri-q deallocates some OpenCL memory buffers
and then copies some data from the GPU to the host. Because OpenCL kernel
invocation is asynchronous, the memory buffers may be deallocated by the time
that the kernel accesses them. KLEE-CL caught this error as a result of its
thread scheduling behaviour—it will defer execution of code running in other
threads (i.e. kernel code) until the current thread explicitly yields execution.
This means that the deallocations (running in the main thread) were executed
before the kernel code. We fixed this error by moving the data copies before
the memory deallocations. Since the data copies were synchronous, they caused
execution of the main thread to be preempted until after kernel execution.

A memory error found in both mri-q and mri-fhd was caused by a read
beyond the end of a memory buffer used to store (x, y, z) coordinates. This
memory buffer was indexed using the work-item identifier, which ranged between
0 and a multiple of the work-group size. This error was never caught, perhaps
due to the fact that all benchmark data provided with Parboil had a size that
was a multiple of the work-group size. We fixed these errors by enclosing the
relevant part of the kernel inside an if statement.

A memory error found in mri-fhd is related to the use of uninitialised mem-
ory. This benchmark allocates a buffer of output data using memalign, which
was assumed to be zero initialised. Since memalign buffers are uninitialised, and
KLEE-CL models this, incorrect results were produced. The fix was simply to
initialise the buffer using memset.

6.2 The Bullet Physics Library

Bullet [6] is a physics library primarily used in gaming and 3D applications. It
incorporates a number of physics simulation algorithms, including a soft body
simulation. This can be used to simulate objects such as cloths which are freely
deformable within the environment. Bullet provides a C++ and an OpenCL
implementation of the soft body simulation.

We implemented two benchmark programs which create a simulation with
two soft body objects, each containing three vertices connected by three edges.
The coordinates of the vertices are concrete values, but all other simulation
parameters are symbolic. The program runs a single simulation step using both
the C++ and the OpenCL implementations, and compares the results.

The first of our benchmarks (softbody) tests the soft body simulation in
isolation, while the second benchmark (dynworld) tests the simulation using a
soft rigid dynamics world, which exercises more of the soft body code.

For the softbody benchmark, KLEE-CL verified that the C++ and OpenCL
code produce the same results. For dynworld, KLEE-CL was able to verify
equivalence under the assumption that x× 0 = 0 in floating point.

One important caveat is that we do not model inaccurate floating point
operations, such as the single precision division operation in OpenCL (which

13

need only be accurate to 2.5 ulp [12, § 7.4]), because the LLVM IR generated by
the Clang compiler does not provide the accuracy of each individual operation.
In fact, while running a test using real GPU hardware (an NVIDIA Tesla C1060),
we found discrepancies between the C++ and OpenCL results, which were due
to a single precision floating point division operation, caused by the incorrect
modelling discussed above. We attempted to rectify this by casting the operands
of the division operator to double precision ([12, § 9.3.9] requires double precision
division to be correctly rounded).

OpenCL compiler bug: Of course, these equivalence results hold under the
additional assumption that all the components involved in running the code—
from compilers to hardware—are correct. The bug discussed below illustrates
this point.

After fixing the single precision issue mentioned above, we were surprised to
see that the test run on real GPU hardware still showed discrepancies between
the OpenCL and C++ implementations, despite the fact that we were able to
verify their equivalence. After further investigation, we found that the PTX
assembly code produced by NVIDIA’s OpenCL compiler continued to use a
single precision division instruction (div.full.f32), despite the cast to double
precision. If we disabled compiler optimisations, using the -cl-opt-disable flag
to the OpenCL compiler, the double precision division instruction (div.rn.f64)
was used. This suggested that the problem may lie in the optimiser.

We worked around this issue by postprocessing the PTX code to replace
div.full.f32 with div.rn.f64 together with appropriate conversions, similar
to the unoptimised code. After doing this, the results obtained were identical.

We reported the issue to NVIDIA who confirmed our bug report, and as
of this writing had fixed the bug, but had not yet released a version of their
OpenCL implementation with the fix.

6.3 OP2

OP2 [8] is a library for generating parallel executables of applications using un-
structured grids. OP2 enables users to write a single program targeting multiple
platforms. OP2 has four implementations: a serial reference (library) implemen-
tation and source-to-source transformations to CUDA, OpenCL and OpenMP.

Among the operations offered by OP2 is the global reduction operation, which
is used to reduce a set of results computed across a set of grid nodes to a single
result. We used KLEE-CL to test the correctness of the OpenCL implementa-
tion of the global reduction operation by extracting the relevant kernel from the
OP2 source code and constructing a benchmark program which uses this kernel
to perform a global reduction on an array of symbolic data.

KLEE-CL detected a race condition in this kernel, and the problematic code
is shown in Listing 2. Each iteration of the for loop on lines 4–9 uses a result
computed in an earlier iteration by another work-item (specifically, work-item
tid uses a result computed by work-item tid+d) without using an execution
barrier beforehand. Because of the lack of synchronisation, the behaviour of the
kernel is undefined by the OpenCL specification.

14

1 int t i d = g e t l o c a l i d (0) , d = g e t l o c a l s i z e (0)>>1;
2 l oca l vo lat i le f loat ∗vtemp = temp ;
3 . . .
4 for (; d>0; d>>=1) { /∗ d i s at most 16 here ∗/
5 i f (t id<d)
6 . . .
7 vtemp [t i d] = vtemp [t i d] + vtemp [t i d+d] ;
8 . . .
9 }

Listing 2. OP2’s unsynchronised loop (slightly modified for formatting purposes).

To understand why this loop was written in this way, one must consider
the history of the code. The OpenCL implementation was heavily based on the
CUDA implementation and was in many places developed by replacing CUDA
constructs with the relevant OpenCL constructs. In CUDA (and the NVIDIA
GPU architecture), each group of 32 work-items within a work-group (referred
to as a warp) is executed in lockstep with implicit synchronisation between
work-items [18]. However, no such feature is present in OpenCL, and OpenCL
code relying on warps has implementation-defined behaviour. In the case of the
NVIDIA implementation of OpenCL this happens to function correctly, however
there is no requirement that it do so on other architectures.

We modified the kernel to introduce a local execution barrier using the
barrier function before each iteration of the loop (between lines 4 and 5).
With this modification in place, KLEE-CL does not report a race condition.

7 Related Work

Despite the growing popularity of GPU languages, there has been relatively little
work on testing and verification techniques for code written in these languages.
While we are not aware of any work directly targeting OpenCL, several relevant
testing techniques exist for checking CUDA code.

Race detection. Most previous work in this space has focused on race de-
tection [1, 15, 24, 25]. Li and Gopalakrishnan [15] and Tripakis et al. [24] propose
two static race detection techniques based on translating CUDA code into SMT
constraints. The main advantage of a static analysis approach is coverage: our
dynamic approach depends on the number of paths explored by symbolic exe-
cution in a given time budget and can only reason about objects with concrete
bounds. On the other hand, static analysis suffers from false positives, due to
various over-approximations resulting from, e.g., analysing kernels in isolation
and loop unrolling.

A dynamic race detection approach similar to our technique is introduced by
Boyer et al. in the context of CUDA programs [1]. A more recent technique from
Zheng et al. [25] combines dynamic race detection with a static analysis pass that
removes accesses that can be statically proven to be safe or unsafe, resulting in
a system with a relatively small runtime overhead. The main weakness of these
techniques is that they depend on the concrete inputs with which the program

15

is run. Instead, our approach can check for symbolic race conditions on all the
different paths explored via symbolic execution.

Our approach is also similar in spirit to previous dynamic race detection
approaches for CPU code [7, 19, 21], although the barrier-based synchronisa-
tion model used in OpenCL allows for a simpler algorithm than in the case of
traditional synchronisation primitives such as locks and semaphores.

Concurrently and independently with our work, GKLEE [16] has extended
KLEE with the ability to find several categories of errors in CUDA programs,
including race conditions and deadlocks caused by execution barrier divergence.

Equivalence checking. As far as we know, this is the first technique that
focuses on checking the equivalence between an OpenCL and a C or C++ imple-
mentation. Our work builds up on previous research on KLEE-FP [5], in which
we have applied a similar approach to crosscheck SIMD and scalar implemen-
tations. To make this general crosschecking approach effective to OpenCL code,
we had to construct an OpenCL model, and add support for concurrency, race
detection and several additional rules and assumptions. In addition to our work
on KLEE-FP, this approach has been successfully used in the past to verify
code equivalence in other contexts, such as hardware verification [4], compiler
optimisations [17], block cipher implementations [23] and parallel numerical pro-
grams [22]. The main advantages of normalizing symbolic expressions and then
comparing them syntactically are that (1) the technique is lightweight compared
to more precise symbolic analyses such as [20], and (2) it can deal with floating-
point constraints, for which there are no efficient constraint solvers currently
available. On the other hand, this approach is prone to false positives, i.e., it can
say that two expressions are not equivalent when in fact they are.

8 Conclusion

We presented an effective technique for crosschecking OpenCL and C/C++ pro-
grams and for detecting race conditions in OpenCL code. We implemented our
approach in the KLEE-CL tool, and applied it to three real OpenCL code bases,
in which it found seven previously unknown errors: two mismatches between the
OpenCL and C implementations, three memory errors, one OpenCL compiler
bug and one race condition. The KLEE-CL tool is freely available from our
website at http://www.pcc.me.uk/~peter/klee-cl/.

Acknowledgements

We would like to thank Stefan Bucur and the authors of Cloud9 [2] for providing
the POSIX threading model; Lee Howes for assistance with the Bullet Physics
library; Daniel Dunbar for helpful discussions; Guy Benyei, Tanya Lattner, An-
ton Lokhmotov and Alberto Magni for their contributions to the Clang OpenCL
front-end; and Paul Marinescu for valuable comments on the text. This work
was partially funded by an EPSRC DTA studentship and the EPSRC Platform
Grant EP/I012036/1.

16

References

[1] M. Boyer, K. Skadron, and W. Weimer. Automated dynamic analysis of CUDA
programs. In STMCS’08, Apr. 2008.

[2] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic execution for
automated real-world software testing. In EuroSys’11, Apr. 2011.

[3] clang: a C language family frontend for LLVM. http://clang.llvm.org/.
[4] E. Clarke and D. Kroening. Hardware verification using ANSI-C programs as a

reference. In ASP-DAC’03, Jan. 2003.
[5] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking of floating-

point and SIMD code. In EuroSys’11, Apr. 2011.
[6] E. Coumans et al. Bullet continuous collision detection and physics library. http:

//bulletphysics.org/.
[7] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race

detection. In PLDI’09, June 2009.
[8] M. B. Giles, G. R. Mudalige, Z. Sharif, G. R. Markall, and P. H. J. Kelly. Perfor-

mance analysis of the OP2 framework on many-core architectures. SIGMETRICS
Performance Evaluation Review, 38(4):9–15, 2011.

[9] D. Grewe and M. F. O’Boyle. A static task partitioning approach for heteroge-
neous systems using OpenCL. In CC’11, Mar.-Apr. 2011.

[10] IMPACT Research Group, UIUC. Parboil benchmark suite. http://impact.

crhc.illinois.edu/parboil.php.
[11] International Organization for Standardization. ISO/IEC 9899-1999: Program-

ming Languages—C, Dec. 1999.
[12] Khronos OpenCL Working Group. The OpenCL Specification, version 1.1, revi-

sion 36, Sept. 2010.
[13] J. C. King. A new approach to program testing. In ICRS’75, Apr. 1975.
[14] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO’04, Mar. 2004.
[15] G. Li and G. Gopalakrishnan. Scalable SMT-based verification of GPU kernel

functions. In FSE’10, Nov. 2010.
[16] G. Li, P. Li, G. Sawaya, and I. Ghosh. GKLEE: Concolic verification and test

generation for GPUs. In PPoPP’12, Feb. 2012.
[17] G. C. Necula. Translation validation for an optimizing compiler. In PLDI’00,

May 2000.
[18] NVIDIA. NVIDIA CUDA Programming Guide, Version 3.0, Feb. 2010.
[19] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In PPoPP’03,

June 2003.
[20] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic

execution. In FSE’08, Nov. 2008.
[21] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A

dynamic data race detector for multithreaded programs. In SOSP’97, Oct. 1997.
[22] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke. Using model checking

with symbolic execution to verify parallel numerical programs. In ISSTA’06, July
2006.

[23] E. W. Smith and D. L. Dill. Automatic formal verification of block cipher imple-
mentations. In FMCAD’08, Nov. 2008.

[24] S. Tripakis, C. Stergiou, and R. Lublinerman. Checking non-interference in SPMD
programs. In HotPar’10, June 2010.

[25] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. GRace: A low-overhead mechanism
for detecting data races in GPU programs. In PPoPP’11, Feb. 2011.

