
Multi-version Software Updates

Cristian Cadar Petr Hosek
Department of Computing
Imperial College London

{c.cadar, p.hosek}@imperial.ac.uk

Abstract—Software updates present a difficult challenge to
the software maintenance process. Too often, updates result in
failures, and users face the uncomfortable choice between using
an old stable version which misses recent features and bug fixes,
and using a new version which improves the software in certain
ways, only to introduce other bugs and security vulnerabilities.

In this position paper, we propose a radically new approach
for performing software updates: whenever a new update
becomes available, instead of upgrading the software to the
new version, we instead run the new version in parallel with
the old one. By carefully coordinating their executions and
selecting the behavior of the more reliable version when they
diverge, we can preserve the stability of the old version without
giving up the features and bug fixes added to the new version.

We are currently focusing on a prototype system targeting
multicore CPUs, but we believe this approach could also be
deployed on other parallel platforms, such as GPGPUs and
cloud environments.

Keywords-software updates, multi-version execution

I. INTRODUCTION

Software updates are an integral part of the software main-
tenance process, with new software versions being released
on a continuous basis. Unfortunately, software updates often
result in failures, which makes many users reluctant to
incorporate the latest patches made available by developers.
As a result, users rely instead on outdated versions, which
despite their relative stability, miss recent features and bug
fixes and may be plagued by security vulnerabilities.

In this position paper, we propose a novel way of
performing software updates, which aims to resolve the
uncomfortable choice that users often face between using
an old stable version which misses recent features and bug
fixes, and using a new version which improves the software
in certain ways, only to introduce other bugs and security
vulnerabilities.

Our idea is simple yet effective: whenever a new update
becomes available, instead of upgrading the software to the
new version, we instead run the new version in parallel with
the old one. By carefully coordinating their executions and
selecting the behavior of the more reliable version when
they diverge, we can preserve the stability of the old version
without giving up the features and bug fixes added to the
new version.

We believe that multi-version software updates are a
timely solution in the context of today’s computing plat-
forms [4]. In recent years, we have witnessed the emergence
of new technology—ranging from multicore processors to
large-scale data centers—which provide an abundance of
computational resources and a high degree of parallelism.
Furthermore, these resources are often left idle, in which
state they consume a large fraction of their full-utilization
energy levels. For example, recent studies [1] have shown
that servers in a data center usually operate at between 10%
and 50% of their maximum utilization; however, even an
energy efficient server consumes half its full power when
doing virtually no work—and for regular servers, this ratio
is much worse.

Our approach aims to improve the software update pro-
cess by taking advantage of idle resources—such as idle
cores on a CPU and idle servers in a data center—to run
multiple versions of an application in parallel, with the
goal of improving the overall reliability and security of the
software being upgraded. Our current focus is on multicore
processors, but we believe this solution could be adapted
to work on other parallel platforms as well. Furthermore,
this update mechanism could be extended to work with a
large number of versions running in parallel and configured
to balance conflicting requirements such as performance,
reliability and energy consumption.

The rest of this paper is organized as follows. Section II
motivates our approach using several real scenarios involv-
ing Chrome, Vim, lighttpd and vsftpd. Then, Section III gives
an overview of our approach and Section IV discusses the
possible ways in which it could be implemented, includ-
ing an initial prototype that we developed for multicore
platforms. Finally, Section V discusses related work and
Section VI concludes.

II. MOTIVATING SCENARIOS

In this section we motivate our approach using existing
scenarios involving the Chrome browser and the Vim editor,
as well as the lighttpd and vsftpd servers. These corre-
spond to two categories of applications that could benefit
from our multi-version software update approach: desktop
applications such as web browsers and office tools for
which reliability is a key concern; and network servers, with
stringent security and dependability requirements.



Google Chrome1 is one of the most widely used web
browsers. Even though Chrome releases are tested exten-
sively before deployment, they sometimes introduce new
bugs that affect the stability of the browser. A concrete
example is version 6.0.466.0, which introduced a bug that
caused Chrome to crash when trying to load certain web
pages over SSL.2 One might argue that in this case the
user should downgrade to an older version and wait until
the bug is fixed. However, versions immediately preceding
6.0.466.0 suffer from a different bug,3 which was introduced
in version 6.0.438.0 and which crashes Chrome during
certain sequences of repeated back and forward navigation.

Vim4 is arguably one of the most popular editors under
UNIX. In version 7.1.127, while trying to fix a memory leak,
Vim developers introduced a double free bug that caused
Vim to crash whenever the user tried to use a path completion
feature. This bug made its way into Ubuntu 8.04, affecting
a large number of users.5

lighttpd6 is a popular web-server used by several high-
traffic websites such as YouTube, Wikipedia, and Meebo.
Despite its popularity, faulty updates are still a common
occurrence in lighttpd. As one example, a patch introduced
in April 20097 (correctly) fixed the way HTTP ETags are
computed. Unfortunately, this fix broke the support for
compression, which relied on the previous way in which
ETags were computed and resulted in a segmentation fault
whenever a client requested HTTP compression. This issue
was only diagnosed and reported in March 20108 and fixed
at the end of April 2010,9 more than one year after it was
introduced, leaving the server vulnerable to possible attacks
in between.

vsftpd10 is a fast and secure FTP server for UNIX sys-
tems. Version 2.2.0 added several new features such as
network isolation, but unfortunately also introduced a bug11

which triggered a segmentation fault whenever a client used
the passive FTP mode. This bug made vsftpd practically
unusable since the passive mode is being frequently used
by clients behind firewalls. Despite being reported several
times, this bug was only fixed in version 2.2.1, released
more than two months after the bug was introduced.

All the scenarios presented above describe software up-
dates which, while trying to add new features or bug fixes,
also introduced new bugs that caused the code to crash under
certain conditions. Improving the reliability of such updates

1http://www.google.com/chrome
2http://code.google.com/p/chromium/issues/detail?id=49197
3http://code.google.com/p/chromium/issues/detail?id=49721
4http://www.vim.org/
5https://bugs.launchpad.net/ubuntu/+source/vim/+bug/219546
6http://www.lighttpd.net/
7http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2438
8http://redmine.lighttpd.net/issues/2169
9http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2723
10https://security.appspot.com/vsftpd.html
11https://bugs.launchpad.net/ubuntu/+source/vsftpd/+bug/462749

Multi-version
Application

Conventional
Application

Virtualization Framework

External Environment

Figure 1. A platform running conventional and multi-version applications
side by side.

is the main goal of our proposed approach: running both
the old and the new version in parallel after an update can
enable applications to survive more errors, without giving
up the new features introduced by the update.

III. OVERVIEW AND MAIN CHALLENGES

The main goal of our approach is to run multiple versions
of an application in parallel, and synchronize their execu-
tions so that (1) users are given the illusion that they interact
with a single version of the application, (2) the multi-version
application is at least as reliable and secure as any of the
individual versions in isolation, and (3) the synchronization
mechanism incurs a reasonable performance overhead.

As shown in Figure 1, our solution requires a form of
virtualization framework that would coordinate the exe-
cution of multiple application versions, and mediate their
interaction with the external environment. Various such
frameworks have been designed in the past in the context
of running multiple automatically generated variants of a
given application in parallel [3], [9], [18], and many of the
techniques proposed in prior work can be reused in our
context. To be practical, this coordination mechanism has
to incur a reasonable overhead on top of native execution
and ensure that the overall system is able to scale up and
down the number of software versions run in parallel in order
to balance conflicting requirements such as performance,
reliability, security and energy consumption.

One particular challenge for our approach is to detect
any divergences between different software versions, resolve
them in such a way as to increase the overall reliability of
the application, and finally synchronize again the different
versions after their executions reconverge to the same be-
havior. Of course, we also need to handle the case in which
the executions of different versions fail to reconverge to the
same behavior after sufficient time.



Selecting the “correct” behavior of an application when
different versions disagree is of course not possible in the
general case without having access to a high-level specifica-
tion. However, one could (1) focus on universal correctness
properties, such as the absence of crashes, and (2) use
various heuristics such as majority voting and favoring
the latest application versions. For example, our current
prototype resolves a divergence by always using the behavior
of the version that has not crashed, and favoring the behavior
of the latest version in all other cases. In this way, we ensure
that the overall application has strictly fewer crashes than
any of the individual versions, while still using the new
features implemented in the latest version.

Note that one key aspect on which our approach relies
is having the different versions be alive at all times. This
ensures that applications can survive crashes that occur at
different points in different versions, but adds the extra
challenge of restarting crashed versions.

Finally, our approach needs a deployment strategy to
decide what versions are run in parallel when the number
of available resources (e.g., idle CPU cores) is limited. We
envision several options—such as keeping the last n released
versions (where n is the number of available resources),
or keeping several very old stable versions—but the exact
strategy should be decided on a case-by-case basis.

IV. IMPLEMENTATION OPTIONS AND CURRENT
PROTOTYPE SYSTEM

Our multi-version execution update mechanism can be
implemented at multiple levels of abstraction. The simplest,
but least flexible approach is to synchronize the different
versions at the level of application inputs and outputs.
This is particularly suitable for applications that use well-
defined protocols such as web servers and web browsers.
The main advantage of this option is that it can tolerate large
differences between different software versions (in fact, one
could even run different implementations, as in [24]), but
the main downside is that it is not applicable in the general
case, when the input-output specification is not available.

A more flexible approach, which we adopted in our
prototype implementation, is to synchronize the different
versions at the level of system calls. System calls represent
the external behavior of an application, as they are the
only way in which an application can interact with the
surrounding environment. While this option allows fewer
changes between different application versions (basically,
the external behavior has to stay the same, although various
optimizations are possible), it does not require any a priori
knowledge of the application’s input/output behavior, and
is particularly suitable in the context of software updates,
where the external application behavior usually remains
unchanged. In fact, an empirical study that we conducted
on several real applications (Vim, lighttpd, redis) has shown
that while the source code of these applications changes

on a regular basis, the external behavior changes only
infrequently, often remaining stable as the software evolves.

An option similar to the system call interposition approach
described above is to synchronize versions at the level of
library calls. This has a performance advantage, as library
functions can be executed only once, propagating the result
to all versions. More generally, one can trade off the amount
of code that is run (and synchronized) in parallel with the
performance overhead achieved by the overall system. For
example, one sensible option would be to avoid replicating
the parts of the code that are highly trusted, e.g., those that
have not been changed in the last several years, or those that
can be statically proven to be safe.

We have implemented our approach in a prototype system
targeted at multicore processors running Linux, using the
system call interposition approach.12 Currently, our proto-
type fully works with only two application versions, but
we are working on adding support for a larger number
of versions. As discussed in Section III, our prototype
focuses on minimizing the number of crashes introduced
via software updates, by using the behavior of the surviving
version when one of the versions crashes, and the behavior
of the latest version in all other cases. One important aspect
of our prototype is its ability to restart a crashed application,
which is accomplished by a combination of lightweight OS-
level checkpointing and a form of runtime code patching
which uses information from a binary static analysis pass.

Our prototype supports a wide range of Linux applica-
tions, in many cases with a reasonable performance overhead
(21.48% on average for SPEC CINT CPU2006, but up to
17x on some other benchmarks). More importantly, we were
able to use our prototype to survive a series of crash bugs
in several real applications, such as Coreutils, lighttpd, and
redis. However, our prototype still has a series of important
limitations, which open up many opportunities for future
development. We discuss some of them below.

Currently, our prototype intercepts every system call per-
formed by each application version. This has two main
disadvantages: first, any changes in system call behavior are
flagged as a divergence.13 We plan to improve this by using
an epoch-based approach [22], in which multiple system
calls are processed at a time, and their overall equivalence
determined in a more flexible way (e.g., two sequences of
writes can be considered to be equivalent as long as their
overall result is the same).

Second, intercepting every system call often has an
important impact on performance. We plan to alleviate
this problem by using two techniques inspired by existing
virtualization technology: (1) we plan to provide multi-
version applications with a “paravirtualization” API [23]

12An earlier version of our prototype is described in [13].
13We optimize this by ignoring several system calls that can be safely

replayed from the last checkpoint (e.g., geteuid), but the general problem
remains.



that would allow them to communicate directly with the
virtualization framework; and (2) we intend to combine this
API with a binary translation approach [20], that would
enable us to dynamically replace certain system calls with
more efficient calls into the virtualization framework. The
binary translation could also be used to dynamically replace
code components that are proven to be safe and do not need
to be replicated across multiple versions.

Furthermore, we plan to enhance our prototype imple-
mentation with the ability to dynamically adjust the number
of versions that are run concurrently. This will ensure that
multi-version applications will be able to consume all avail-
able resources (i.e., idle processor time) without affecting
the overall system performance during peak load.

Finally, we would like to be able to transparently run
multi-version applications on multiple underlying platforms,
ranging from multicore processors to large-scale data cen-
ters. This requires the ability to span our virtualized envi-
ronment across multiple logical as well as physical nodes. In
particular, we aim to include the possibility of executing cer-
tain versions of an application remotely, to enable scenarios
with hundreds or even thousands of application versions.

V. RELATED WORK

The idea of concurrently running multiple versions (or
a multi-version execution) of the same application was
first explored in the context of N -version programming,
a software development approach introduced in the 1970s
in which multiple teams of programmers independently de-
velop functionally equivalent versions of the same program
in order to minimize the risk of having the same bugs in all
versions [7]. During runtime, these versions are executed in
parallel and majority voting is used to continue in the best
possible way when a divergence occurs.

Recently, several researchers have proposed techniques
that apply a form of N -version programming based on
automatically generated software variants [3], [6], [9], [11],
[18], [21], [24], [25]. For example, DieHard [3] uses heap
over-provisioning and full randomization of object place-
ment and memory reuse to run multiple replicas and reduce
the likelihood that a memory error will have any effect; and
Orchestra [18] runs two versions of the same application
with stacks growing in opposite directions, and synchronizes
their execution at the level of system calls, raising an alarm if
any divergence is detected, which would have been triggered
by a stack-based buffer overflow attack.

Cox et al. [9] propose a general framework for increasing
application security by running in parallel several automati-
cally generated diversified variants of the same program. The
technique was implemented in two prototypes, one which
runs the variants on different machines, and one which runs
them on the same machine and synchronizes them at the
system call level, using a modified Linux kernel.

There are two key differences between our approach
and previous work in this space. First, we do not rely
on automatically generated variants, but instead propose
to use existing software versions as a mechanism for im-
proving software updates. This also means that as opposed
to previous solutions, the versions run in parallel are not
semantically equivalent—this eliminates the challenge of
generating diversified variants and creates opportunities in
terms of recovery from failures, but also introduces addi-
tional challenges in terms of synchronizing the execution
of the different versions. Second, while previous work has
focused on detecting divergences, our key concern is to
survive them, in order to increase the reliability, availability,
and security of the overall application.

Research on surviving software failures has received a
lot of attention in the past [5], [8], [15]–[17], [19], [22],
and our proposed approach can benefit from the techniques
developed in this context.

Previous work on improving the software update process
has looked at different aspects related to managing and
deploying new software versions. For example, Beattie et
al. [2] has looked at the issue of timing the application of
security updates, while Crameri et al. [10] has proposed a
framework for staged deployment, in which user machines
are clustered according to their environment and software
updates are tested across clusters using several different
strategies. In relation to this work, our approach encourages
users to always apply a software update, but it would still
benefit from effective update strategies in order to decide
what versions to keep when resources are limited.

Many large-scale services, such as Facebook and Flickr
use a continuous deployment approach, where new versions
are continuously released to users [12], [14], but each
version is often made accessible only to a fraction of users
to prevent complete outage in case of newly introduced
errors. While this approach helps minimize the number of
users affected by new bugs, certain bugs may manifest
themselves only following prolonged operation, after the
release has been deployed to the entire user base. We believe
our proposed approach is complementary to continuous
deployment, and could be effectively combined with it.

VI. CONCLUSION

Software updates are an integral part of the software
development and maintenance process, but unfortunately
they present a high risk, as new releases often introduce
new bugs and security vulnerabilities.

In this position paper, we have argued for a new way of
performing software updates, in which the new version of an
application is run in parallel with old application versions,
in order to increase the reliability and security of the overall
system. We believe that multi-version software updates can
have a significant impact on current software engineering



practices, by allowing frequent software updates without
sacrificing the stability and security of older versions.

ACKNOWLEDGMENTS

We would like to thank Paolo Costa, Peter Pietzuch and
Alex Wolf for discussions on multiplicity computing [4], and
their feedback on the text. Petr Hosek’s doctoral studies are
supported by a Google European PhD Fellowship.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-
proportional computing,” Computer, vol. 40, pp. 33–37, 2007.

[2] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright,
“Timing the application of security patches for optimal up-
time,” in Proceedings of the 16th USENIX Conference on
System Administration (LISA’02), Nov. 2002.

[3] E. D. Berger and B. G. Zorn, “Diehard: probabilistic mem-
ory safety for unsafe languages,” in Proc. of the Confer-
ence on Programing Language Design and Implementation
(PLDI’06), Jun. 2006.

[4] C. Cadar, P. Pietzuch, and A. L. Wolf, “Multiplicity com-
puting: A vision of software engineering for next-generation
computing platform applications,” in Proceedings of the
FSE/SDP workshop on the Future of Software Engineering
Research (FoSER’10), Nov. 2010.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot—a technique for cheap recovery,” in Proc. of
the 6th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’04), Dec. 2004.

[6] R. Capizzi, A. Long, V. Venkatakrishnan, and A. P. Sistla,
“Preventing information leaks through shadow executions,”
in Proc. of the 24th Annual Computer Security Applications
Conference (ACSAC’08), Dec. 2008.

[7] L. Chen and A. Avizienis, “N-version programming: A fault-
tolerance approach to reliability of software operation,” in
Proc. of the 8th IEEE International Symposium on Fault
Tolerant Computing (FTCS’78), Jun. 1978.

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham, “Vigilante: end-to-end containment
of Internet worms,” in Proc. of the 20th ACM Symposium on
Operating Systems Principles (SOSP’05), Oct. 2005.

[9] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant sys-
tems: a secretless framework for security through diversity,”
in Proc. of the 15th USENIX Security Symposium (USENIX
Security’06), Jul.-Aug. 2006.

[10] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and
W. Zwaenepoel, “Staged deployment in Mirage, an integrated
software upgrade testing and distribution system,” in Proc. of
the 21st ACM Symposium on Operating Systems Principles
(SOSP’07), Oct. 2007.

[11] D. Devries and F. Piessens, “Noninterference through secure
multi-execution,” in Proc. of the IEEE Symposium on Security
and Privacy (IEEE S&P’10), May 2010.

[12] R. Harmess, “Flipping out,” http://code.flickr.com/blog/2009/
12/02/flipping-out/, 2009.

[13] P. Hosek and C. Cadar, “Safe software updates via multi-
version execution,” Imperial College London, Tech. Rep.
DTR11-13, Nov. 2011.

[14] R. Johnson, “OOPSLA keynote: Moving fast at scale - lessons
learned at Facebook,” in Proc. of the 24th Annual Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’09), Oct. 2009.

[15] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sul-
livan, W. F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically patching errors in deployed software,” in
Proc. of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’09), Oct. 2009.

[16] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating
bugs as allergies—a safe method to survive software failures,”
in Proc. of the 20th ACM Symposium on Operating Systems
Principles (SOSP’05), Oct. 2005.

[17] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee, “Enhancing server availability and
security through failure-oblivious computing,” in Proc. of the
6th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’04), Dec. 2004.

[18] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra:
intrusion detection using parallel execution and monitoring of
program variants in user-space,” in Proc. of the 4th European
Conference on Computer Systems (EuroSys’09), Mar.-Apr.
2009.

[19] S. Sidiroglou and A. D. Keromytis, “Execution transactions
for defending against software failures: Use and evaluation,”
Springer International Journal of Information Security (IJIS),
vol. 5, no. 2, pp. 77–91, 2006.

[20] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and
S. G. Robinson, “Binary translation,” Communications of the
Association for Computing Machinery (CACM), vol. 36, pp.
69–81, 1993.

[21] O. Trachsel and T. R. Gross, “Variant-based competitive
parallel execution of sequential programs,” in Proc. of the
7th ACM International Conference on Computing Frontiers
(CF’10), May 2010.

[22] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy,
“Detecting and surviving data races using complementary
schedules,” in Proc. of the 23rd ACM Symposium on Op-
erating Systems Principles (SOSP’11), Oct. 2011.

[23] A. Whitaker, M. Shaw, and S. D. Gribble, “Scale and per-
formance in the Denali isolation kernel,” in Proc. of the
5th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’02), Dec. 2002.

[24] H. Xue, N. Dautenhahn, and S. T. King, “Using replicated
execution for a more secure and reliable web browser,” in
Proc. of the 19th Network and Distributed System Security
Symposium (NDSS’12), Feb. 2012.

[25] A. R. Yumerefendi, B. Mickle, and L. P. Cox, “Tightlip:
Keeping applications from spilling the beans,” in Proc. of
the 4th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’07), Apr. 2007.


