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Abstract—Software systems are constantly evolving, with new
versions and patches being released on a continuous basis.
Unfortunately, software updates present a high risk, with many
releases introducing new bugs and security vulnerabilities.

We tackle this problem using a simple but effective multi-
version based approach. Whenever a new update becomes avail-
able, instead of upgrading the software to the new version, we
run the new version in parallel with the old one; by carefully
coordinating their executions and selecting the behaviour of the
more reliable version when they diverge, we create a more secure
and dependable multi-version application.

We implemented this technique in MX, a system targeting
Linux applications running on multi-core processors, and show
that it can be applied successfully to several real applications
such as Coreutils, a set of user-level UNIX applications; Lighttpd,
a popular web server used by several high-traffic websites such
as Wikipedia and YouTube; and Redis, an advanced key-value
data structure server used by many well-known services such as
GitHub and Flickr.

Index Terms—multi-version execution, software updates, sur-
viving software crashes.

I. INTRODUCTION

In this paper, we propose a novel technique for improving
the reliability and security of software updates, which takes
advantage of the idle resources made available by multi-core
platforms. Software updates are an integral part of the software
life-cycle, but present a high failure rate, with many users and
administrators refusing to upgrade their software and relying
instead on outdated versions, which often leaves them exposed
to critical bugs and security vulnerabilities. For example, a
recent survey of 50 system administrators has reported that 70%
of respondents refrain from performing a software upgrade,
regardless of their experience level [13].

One of the main reasons for which users hesitate to install
updates is that a significant number of them result in failures.
It is only too easy to find examples of updates that fix a bug
or a security vulnerability only to introduce another problem
in the code. For example, a recent study of software updates in
commercial and open-source operating systems has shown that
at least 14.8% to 25% of fixes are incorrect and have affected
end-users [32]. Our goal is to improve the software update
process in such a way as to encourage users to upgrade to the
latest software version, without sacrificing the stability of the
older version.

Our proposed solution is simple but effective: whenever
a new update becomes available, instead of upgrading the
software to the newest version, we run the new version in
parallel with the old one. Then, by selecting the output of the
more reliable version when their executions diverge, we can

increase the overall reliability of the software; in effect, our
goal is to have the multi-version software system be at least
as reliable and secure as each individual version by itself.

We implemented this approach in a prototype system called
MX, which targets crash bugs in Linux applications running
on multi-core processors. MX allows a new and an old version
of an application to run concurrently, without requiring any
modifications to the application itself or the operating system,
nor any input from the user. The synchronisation of the
two versions is performed at the system call level, using
system call interposition and synchronisation. When one of the
versions crashes, MX transparently restarts it via a lightweight
checkpointing mechanism and often allows it to survive the
bug by using the code of the other version.

We evaluate MX by showing that it can successfully
survive crashes in several real applications, specifically several
Coreutils utilities and two popular servers, Lighttpd and Redis.
In summary, the main contributions of this paper are:

1) A novel software update approach based on multi-version
execution which allows applications to survive crash errors
introduced by incorrect software updates;

2) A study of the evolution of application external behaviour
confirming the feasibility of our approach;

3) A prototype system for multi-core x86 and x86-64 Linux
systems which implements this approach without requiring
any changes to the application binaries, nor the operating
system kernel;

4) An evaluation of our prototype on several real applications:
Coreutils, a set of user-level UNIX utilities; Lighttpd, a
popular web server used by several high-traffic websites
such as Wikipedia and YouTube; and Redis, an advanced
key-value data structure server used by many well-known
services such as GitHub and Flickr.

The rest of this paper is organised as follows. §II introduces
our approach through a real update scenario in Lighttpd.
Then, §III presents a study analysing the feasibility of our
approach, §IV describes our MX prototype targeting Linux
applications running on multi-core processors, and §V presents
our experience applying MX to several real applications. Finally,
§VI discusses the different trade-offs involved in our approach,
§VII presents related work and §VIII concludes.

II. MOTIVATING EXAMPLE

To motivate our approach, we present a real scenario involv-
ing Lighttpd, which is representative of one type of applications
which could benefit from our approach, namely server appli-
cations with stringent security and availability requirements.



Lighttpd1 is a popular open-source web-server used by
several high-traffic websites such as Wikipedia and YouTube.
Despite its popularity, crash bugs are still a common occurrence
in Lighttpd, as evident from its bug tracking database.2

Below we discuss one such bug, which our approach could
successfully eliminate.

In April 2009, a patch was applied3 to Lighttpd’s code related
to the HTTP ETag functionality. An ETag is a unique string
assigned by a web server to a specific version of a web resource,
which can be used to quickly determine if the resource has
changed. The patch was a one-line change, which discarded
the terminating zero when computing a hash representing the
ETag. More exactly, line 47 in etag.c:
for (h=0, i=0; i < etag->used; ++i) h = (h<<5)
ˆ(h>>27)ˆ(etag->ptr[i]);

was changed to:
for (h=0, i=0; i < etag->used-1; ++i) h = (h<<5)
ˆ(h>>27)ˆ(etag->ptr[i]);

This correctly changed the way ETags are computed, but
unfortunately, it broke the support for compression, whose
implementation depended on the previous computation. More
precisely, Lighttpd’s support for HTTP compression uses
caching to avoid re-compressing files which have not changed
since the last access. To determine whether the cached file
is still valid, Lighttpd internally uses ETags. Unfortunately,
the code implementing HTTP compression did not consider
the case when ETags are disabled. In this case, etags->used
is 0, and when the line above is executed, etag->used-1
underflows to a very large value, and the code crashes while
accessing etag->ptr[i]. Interestingly enough, the original
code was still buggy (it always returns zero as the hash value,
and thus it would never re-compress the files), but it was not
vulnerable to a crash.

The segfault was diagnosed and reported in March 20104 and
fixed at the end of April 2010,5 more than one year after it was
introduced. The bottom line is that for about one year, users
affected by this buggy patch essentially had to decide between
(1) incorporating the new features and bug fixes added to the
code, but being vulnerable to this crash bug, and (2) giving up
on these new features and bug fixes and using an old version
of Lighttpd, which is not vulnerable to this bug.

Our approach provides users with a third choice; when a
new version arrives, instead of replacing the old version, we
run both versions in parallel. In our example, consider that we
are using MX to run a version of Lighttpd from March 2009.
When the buggy April 2010 version is released, MX runs it in
parallel with the old one. As the two versions execute:

• As long as the two versions have the same external
behaviour (e.g. they write the same values into the same
files, or send the same data over the network), they are
run side-by-side and MX ensures that they act as one to
the outside world (see §IV-A);

1http://www.lighttpd.net/
2http://redmine.lighttpd.net/issues/
3http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2438
4http://redmine.lighttpd.net/issues/2169
5http://redmine.lighttpd.net/projects/lighttpd/repository/revisions/2723

• When one of the versions crashes (e.g. the new version exe-
cutes the buggy patch), MX will patch the crashing version
at runtime using the behaviour of the non-crashing version
(see §IV-B). In this way, MX can successfully survive
crash bugs in both the old and the new version, increasing
the reliability and availability of the overall application;

• When a non-crashing divergence is detected, MX will
discard one of the versions (by default the old one, but
other heuristics can be used). The other version can be
later restarted at a convenient synchronisation point (e.g.
at the beginning of the dispatch loop of a network server).

From the user’s point of view, this process is completely
transparent and does not cause any interruption in service. In
our example, this effectively eliminates the bug in Lighttpd,
while still allowing users to use the latest features and bug
fixes of the recent versions.

III. FEASIBILITY STUDY

Our approach is based largely on the assumption that during
software evolution, the changes to the external behaviour of
an application are relatively small. In the context of Linux
applications, the external behaviour of an application consists of
its sequence of system calls, which are the primary mechanism
for an application to change the state of its environment. Note
that the key insight here is that we are only concerned with
externally observable behaviour, and are oblivious to the way
the external behaviour is generated. As a trivial example, given
two versions of a routine that outputs the smallest element of
an array, our approach considers them equivalent even if the
first version scans the array from the first to the last element,
while the other scans it in reverse order.

To verify this assumption, we compared 164 successive
revisions of the Lighttpd web server, namely revisions in the
range 2379–2635 of branch lighttpd-1.4.x, which were de-
veloped and released over a span of approximately ten months,
from January to October 2009. To understand the amount of
code changes in these versions, we computed the number of
lines of code (LOC) that have changed from one version to
the next. During this period, code patches in Lighttpd varied
between 1 and 2959 LOC, with a median value of 33 LOC.

To compare the external behaviour of each version, we traced
the system calls made by these versions using the strace6

tool, while running all the tests from the Lighttpd regression
suite targeting the core functionality (a total of seven tests,
but each test contains a large number of test cases issuing
HTTP requests). All tests were executed on a machine running
a Linux 2.6.40.6 x86-64 kernel and the GNU C library 2.14.

The system call traces were further normalised and post-
processed. We first split the original trace on a per-process basis,
and normalised all differences caused by timing (which would
not affect MX’s operation), e.g. we collapsed all sequences of
accept-poll system calls, which represent repeated polling
operations. Trace files were then post-processed by eliminating
individual system call arguments and return values. This post-
processing step might reduce the precision of our comparison,

6http://sourceforge.net/projects/strace/
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Fig. 1. Correlation of differences in post-processed system call traces with
differences in source code across 164 revisions of Lighttpd. The seven named
revisions are the only ones introducing external behaviour changes.

but we performed it because many system calls accept as
arguments addresses of data structures residing in the virtual
address space, and these addresses may differ across versions
(but MX handles this while mediating the effect of system
calls, as described in §IV-A). Finally, for each test case, we
compared the traces of consecutive Lighttpd versions using the
edit distance.

Our results are shown in Figure 1, which correlates the
differences in post-processed system call traces with the source
code changes. The graph shows that changes in externally
observable behaviour occur only sporadically. In fact, 156
versions (which account for around 95% of all the versions
considered) introduce no changes in external behaviour. In
particular, the revision which introduced the bug described in
§II is one of the versions that introduces no changes, yet this
revision is responsible for a critical crash bug.

IV. MX PROTOTYPE SYSTEM

We have implemented our approach in a prototype system
called MX, targeted at multi-core processors running Linux.
Currently, MX works with only two application versions, but
we are adding support for arbitrarily many versions. The system
works directly on application binaries, making it easy to deploy
it and possibly integrate it with existing software package
managers such as apt or yum.

On a platform using MX, conventional (i.e. unmodified)
applications and multi-version (MV) applications run side by
side. The key property that must hold on such a platform is
that without purposely trying to do so, applications should
not be able to distinguish between conventional and MV
applications running on the platform. In particular, the multiple
versions of an MV application should appear as one to any
other entity interacting with them (e.g. user, operating system,
other machines). Furthermore, MV applications should be more
reliable and secure than their component versions, and their
performance should not be significantly degraded.

To achieve these goals, our prototype MX employs several
different components, as shown in the architectural overview
of Figure 2. The input to MX consists of the binaries of two

Fig. 2. MX system architecture.

versions of an application, which we will refer to as the old
version—the one already running on the system, and the new
version—the one newly released.

These two binaries are first statically analysed by the SEA
(Static Executable Analyser) component, which constructs a
mapping from the control flow graph (CFG) of the old version
to the CFG of the new version (§IV-C). The two versions are
then passed to MXM (Multi-eXecution Monitor), whose job is
to run the two versions in parallel, synchronise their execution,
virtualise their interaction with the outside environment, and
detect any divergences in their external behaviour (§IV-A).
Once a divergence is detected, it is resolved by REM (Runtime
Execution Manipulator), which selects between the available
behaviours, and resynchronises the two versions after the
divergence (§IV-B). The rest of this section describes the main
MX system components and their implementation in more
detail, and discusses how they work together to support safe
software updates.

A. MXM: Multi-eXecution Monitor
One of the main components of our multi-version execution

environment is the MXM monitor. MXM’s main jobs are to
run the two versions concurrently, mediate their interaction
with the outside world, synchronise their executions, and detect
any divergences in their external behaviour. MXM works by
intercepting all system calls issued by each application version,
and manipulating them to ensure that the two versions are
executed in a synchronised fashion and act as one to the
outside world.

MXM is implemented using the ptrace interface provided
by the Linux kernel. This interface, often used for application
debugging, allows simple deployment (without any need
for compile-time instrumentation) and makes the monitor
itself lightweight since it is running as a regular unprivileged
process. MXM is similar in operation to previous monitors
whose goal is to synchronise applications at the level of
system calls [20], [24].

MXM runs each version in a separate child process, intercept-
ing all their system calls. When a system call is intercepted in
one version, MXM waits until the other version also performs a
system call. With a pair of system calls in hand (one executed
by the old version, and one by the new version), MXM compares



their types and arguments. If they differ, MXM has detected a di-
vergence and invokes the REM component to resolve it (§IV-B).

Otherwise, if the two versions perform the same system call
with the same arguments, MXM virtualises their interaction
with the environment. If the operation performed by the system
call has no side effects and does not involve virtualised state
(e.g. sysinfo), MXM allows both processes to execute it inde-
pendently. Otherwise, it executes the system call on their behalf
and copies its results into the address spaces of both versions.

MXM must also enforce deterministic execution across
versions. This consists mainly of intercepting instructions
that may produce non-deterministic results, and returning
the same result in both versions. Examples of such non-
deterministic operations include random number generators
(e.g. read calls to /dev/[u]random), date and time (e.g. read
calls to /etc/localtime), and access to files and network
(e.g. file descriptor consistency). Note that non-deterministic
effects resulting from allocating memory objects at different
addresses in memory or randomly arranging memory areas via
address space layout randomisation (ASLR) do not pose any
problems: MXM understand the semantics of individual system
calls and rather than directly comparing memory addresses
(which might be different in each executed version), it compares
the actual values stored at those memory locations.

There are several challenges that we encountered while
implementing MXM. First, MXM must partly understand
the semantics of system calls. For example, many system
call parameters use complex (often nested) structures with
complicated semantics to pass values to the operating system
kernel, as in the case of ioctl or futex. To be able to
compare the parameters of these system calls and copy back
their results, MXM needs to understand the semantics of these
structures. However, there are only a relatively small number
of system calls in Linux, and once the support for handling
them is implemented, it can be reused across applications.
MXM currently implements 131 system calls (out of the 311
provided by Linux x86-64 3.1.9), which was enough to allow
us to run MX on our benchmarks (§V).

Second, the arguments of a system call are often passed
through pointers, which are only valid in the application
address space, which is not directly available to MXM.
Therefore, MXM needs to copy the contents pointed to by
these structures to its own address space in order to perform
their comparison. The ptrace interface on x86-64 only
allows to copy one quadword per system call, which is very
expensive. Previous approaches either used various ad-hoc
optimisations [24] such as named pipes or shared memory
with custom shellcode, or a modified kernel [20] to overcome
this limitation. Instead, MXM uses cross memory attach, a
new mechanism for fast interprocess communication which
has been recently added to the Linux kernel [10].

Finally, a particular challenge arises in the context of multi-
process and multithreaded applications. Using a single monitor
instance to intercept both versions and their child processes (or
threads) would eliminate any advantage that these applications
derive from using concurrency. Therefore, MXM uses a new
monitor thread for each set of child processes (or threads)

spawned by the application. For instance, if the old and new
versions each have a parent and a child process, then MXM
will use two threads: one to monitor the parent processes, and
one to monitor the child processes in each version.

MXM does not enforce deterministic execution across
multiple versions of multithreaded programs (which may
diverge if race conditions can lead to different external
behaviour across executions), although we could overcome this
limitation by combining it with recently proposed deterministic
multithreading systems such as DTHREADS [18].

B. REM: Runtime Execution Manipulator

At the core of our system lies the REM component, which is
invoked by MXM whenever a divergence is detected. REM has
two main jobs: (1) to decide whether to resolve the divergence
in favour of the old or the new version; and (2) to allow the other
version to execute through the divergence and resynchronise the
execution of the two versions after the divergence. As discussed
before, in this paper we focus our attention on surviving crash
errors, so the key challenge is to allow the crashing version
to survive the crash. This is essential to the success of our
approach, which relies on having both versions alive at all
times, so that the overall application can survive any crash
bugs that happen in either the old or the new version (although
of course, not in both at the same time).

We emphasise that we apply our approach only to crash
errors (those raising a SIGSEGV signal), and not to other types
of program termination, such as abort. This is important
from a security perspective, because when a vulnerability is
discovered, but a proper solution is not yet known, developers
often fail-stop the program rather than letting it continue and
allowing the attacker to compromise the system.

Suppose that one of the versions has crashed between the
execution of system call s1 and the execution of system call s2.
Then, in many common scenarios, the code executed between
the two system calls is responsible for the crash (e.g. the old
version crashes because it doesn’t incorporate a bug fix present
in the new version, or the new version crashes because its code
was patched incorrectly). Therefore, our strategy is to do a
form of runtime code patching, in which we use the code of
the non-crashing version to execute over the buggy code in
the crashing version.

Our exact recovery mechanism is illustrated in Figure 3. At
each system call, MX creates a lightweight checkpoint of each
version. This is implemented using the clone system call in
Linux, which internally uses a copy-on-write strategy.

As shown in Figure 3, suppose that the crash happens in
version v2, between system calls s1 and s2. Then, REM first
restores v2 at point s1, copies v1’s code into v2’s code segment,
executes over the buggy code using v1’s code (but note that
we are still using v2’s memory state), and then restore v2’s
code at point s2.

There are several challenges in implementing this functional-
ity. First, REM needs the ability to read and write the application
code segment. In the current implementation, we bypass this
by linking together the two application versions after renaming
all the symbols in one of the versions using a modified version



Fig. 3. REM’s recovery mechanism uses the code of the non-crashing version
to run through the buggy code.

of the objcopy tool.7 However, in the future we plan to
implement this transparently by using the cross-memory attach
mechanism used by MXM.

Second, REM needs to modify the contents of the stack
in v2. This is necessary because the return addresses on the
stack frames of v2 still point to v2’s original code, which was
now replaced by v1’s code. Without also modifying v2’s stack,
any function return instruction executed between s1 and s2
would most likely veer execution to an incorrect location, since
function addresses are likely to be different across different
versions. Thus, after REM replaces v2’s code, it also updates
the return addresses on v2’s stack with the corresponding return
addresses in v1, which are obtained via static analysis (§IV-C).
Because system calls are invoked via wrapper functions in
libc, this ensures that when v2 resumes execution, it will
immediately return to the code in v1. To implement this
functionality, REM makes use of the libunwind library,8

which provides a portable interface for accessing the program
stack, for both x86 and x86-64 architectures. To actually modify
the execution stack of v2, REM uses again the ptrace interface.

Unfortunately, updating the stack return addresses is not
sufficient to ensure that v2 uses v1’s code between s1 and s2,
as v2 may also use function pointers to make function calls.
To handle such cases, REM inserts breakpoints to the first
instruction of every function in v2’s original code. Then, when
a breakpoint is encountered, REM is notified via a SIGTRAP
signal, and redirects execution to the equivalent function in
v1’s code (which is obtained from the SEA component) by
simply changing the instruction pointer.

Finally, after executing through the buggy code, REM
performs the same operations in reverse: it redirects execution
to v2’s original code, changes the return addresses on the stack
to point to v2’s functions, and disables all breakpoints inserted
in v2’s code. The one additional operation that is done at this
point is to copy all the global data modified by v1’s code into
the corresponding locations referenced by v2’s code.

Note that MX cannot currently handle major modifications
to the layout of the data structures used by the code, including

7http://sourceware.org/binutils/docs/binutils/objcopy.html
8http://www.nongnu.org/libunwind/

individual stack frames. While this still allows us to support
several common software update scenarios, in future work we
plan to improve the system with the ability to perform full
stack reconstruction [19] and automatically infer basic data
structure changes at the binary-level [12].

Our approach of using the code of the non-crashing version
to survive failures in the crashing one may potentially leave the
recovered version in an inconsistent state. However, MX is able
to discover most internal state inconsistencies by comparing
whether the two versions have the same external behaviour.
When the behaviour of the recovered version starts to differ,
MX will immediately discard it and continue with only one
version to ensure correctness. The discarded version can be later
restarted at a convenient synchronisation point. This restarting
functionality is not currently implemented in MX, but we plan
to add it as a future extension.

C. SEA: Static Executable Analyser
The SEA component statically analyses the binaries of the

two versions to obtain information needed at runtime by the
MXM and REM components. SEA is invoked only once, when
the multi-version application is assembled from its component
versions.

The main goal of SEA is to create several mappings from
the code of one version to the code of the other. First, SEA
extracts the addresses of all functions in one version and maps
them to the addresses of the corresponding functions in the
other version. This mapping is used by REM to handle calls
performed via function pointers (§IV-B).

Second, SEA computes a mapping from all possible return
addresses in one version to the corresponding return addresses
in the other version. In order to allow for code changes, this
mapping is done by computing an ordered list of all possible
return addresses in each function. For example, if function foo
in v1 performs call instructions at addresses 0xabcd0000 and
0xabcd0100, and function foo in v2 performs call instruc-
tions at addresses 0xdcba0000 and 0xdcba0400, then SEA
will compute the mapping {0xabcd0005 → 0xdcba0005,
0xabcd0105 → 0xdcba0405} (assuming each call instruc-
tion takes 5 bytes). This mapping is then used by REM to
rewrite return addresses on the stack.

To construct these tables, SEA first needs to extract the
addresses of all function symbols and then disassemble the code
for each individual function in order to locate the call instruc-
tions within them. The implementation is based on the libbfd
and libopcodes libraries, part of the GNU Binutils suite.9

To obtain the addresses of all function symbols defined by the
program, SEA uses libbfd to extract the static and dynamic
symbol tables and relocation tables. To disassemble functions,
SEA uses the libbf library,10 built on top of libopcodes.

V. EVALUATION

To evaluate our approach, we show that MX can survive crash
bugs in several real applications: GNU Coreutils (§V-A), Redis
(§V-B) and Lighttpd (§V-C). We then examine the question

9http://www.gnu.org/software/binutils/
10http://github.com/petrh/libbf



TABLE I
UTILITIES FROM GNU Coreutils, THE CRASH BUGS USED, AND THE

VERSIONS IN WHICH THESE BUGS WERE INTRODUCED AND FIXED. WE
GROUP TOGETHER UTILITIES AFFECTED BY THE SAME OR SIMILAR BUGS.

Utility Bug description Bug span
md5sum Buffer underflow v5.1 – v6.11sha1sum
mkdir NULL-pointer dereference v5.1 – v6.11mkfifo
mknod
cut Buffer overflow v5.3 – v8.11

of how far apart can be the versions run by MX (§V-D), and
discuss MX’s performance overhead (§V-E).

A. Coreutils
As an initial evaluation of MX’s ability to survive crashes, we

have used applications from the GNU Coreutils utility suite,11

which provides the core user-level environment on most UNIX
systems. We have selected a number of bugs reported on the
Coreutils mailing list, all of which trigger segmentation faults.
The bugs are described in Table I, together with the utilities
affected by each bug and the versions in which they were
introduced and fixed.

For all these bugs, we configured MX to run the version
that fixed the bug together with the one just before. MX
successfully intercepted the crash and recovered the execution
by using the strategy described in §IV-B.

B. Redis
Redis is an advanced key-value data structure server,12

used by many well-known services such as GitHub and Flickr.
Because the whole dataset is held in memory, reliability is
critically important, as a crash could result in total data loss.
However, like any other large software system, Redis is often
subject to crash bugs. Issue 34413 is one such example. This
issue causes Redis to crash when the HMGET command is used
with the wrong type. The bug was introduced during a code
refactoring applied in revision 7fb16bac. The original code of
the problematic hmgetCommand function is shown in Listing 1,
while the (buggy) refactored version is shown in Listing 2.

In the original code, if the lookup on line 1 is successful,
but the type is not REDIS_HASH (line 9), the function returns
after reporting an incorrect type (lines 10–11). However, in
the refactored version (Listing 2), the return statement is
missing, and after reporting an incorrect type (line 4), the
function continues execution and crashes inside the hashGet
function invoked on line 8. This is a critical bug, which may
result in losing some or even all of the stored data. The bug
was introduced in April 2010, diagnosed and reported only half
a year later in October 2010 and then fixed after fifteen days.

Below, we describe how MX can survive this bug while
running in parallel the Redis revision a71f072f (the old
version, just before the bug was introduced) with revision
7fb16bac (the new version, just after the bug). MX first

11http://www.gnu.org/software/coreutils/
12http://redis.io/
13http://code.google.com/p/redis/issues/detail?id=344

invokes SEA to perform a static analysis of the two binaries
and construct the mappings described in §IV-C. Then, MX
invokes the MXM monitor, which executes both versions as
child processes and intercepts their system calls.

When the new version crashes after issuing the problematic
HMGET command, MXM intercepts the SIGSEGV signal which
is sent to the application by the operating system. At this
point, REM starts the recovery procedure. First, REM sends a
SIGKILL signal to the new version to terminate it. It then
takes the last checkpoint of the new version, which was
taken at the point of the last invoked system call, which in
this case is an epoll_ctl system call. Then, REM uses the
information provided by SEA to rewrite the stack of the new
version, as detailed in §IV-B. In particular, REM replaces the
return addresses of all functions in the new version with the
corresponding addresses from the old version. REM also adds
breakpoints at the beginning of all the functions in the code of
the new version (to intercept indirect calls via function pointers),
and then finally restores the original processor registers of
the checkpointed process and restarts the execution of the
(modified) new version.

Since the checkpoint was performed right after the execution
of the system call epoll_ctl, the first thing that the code does
is to return from the libc wrapper that performed this system
call. This in turn will return to the corresponding code in the
old version that invoked the wrapper, since all return addresses
on the stack have been rewritten. From then on, the code of
the old version is executed (but in the state of the new version),
until the first system call is intercepted. In our example, the old
and the new versions perform the same system call (and with
the same arguments), so REM concludes that the two processes
have re-converged, and thus restores back the code of the new
version by performing the steps above in reverse, plus the
additional step of synchronising their global state (see §IV-B).
Finally, the control is handed back to the MXM monitor, which
continues to monitor the execution of the two versions.

C. Lighttpd

To evaluate MX on Lighttpd, we have used two different
crash bugs. The first bug is the one described in detail in
§II, related to the ETag and compression functionalities. As
previously discussed, the crash is triggered by a very small
change, which decrements the upper bound of a for loop by
one. MX successfully protects the application against this crash,
and allows the new version to survive it by using the code of
the old version.

The other crash bug we reproduced affects the URL rewrite
functionality.14 This is also caused by an incorrect bound in a
for loop. More precisely, the loop:
for (k=0; k < pattern_len; k++) should have been
for (k=0; k+1< pattern_len; k++)

The bug seems to have been present since the very first
version added to the repository. It was reported in December
2009, and fixed one month later. As a result, we are running
MX using the last version containing the bug together with the

14http://redmine.lighttpd.net/projects/lighttpd/issues/2140



1 robj *o = lookupKeyRead(c->db, c->argv[1]);
2 if (o == NULL) {
3 addReplySds(c,sdscatprintf(sdsempty(),"*%d\r\n",

c->argc-2));
4 for (i = 2; i < c->argc; i++) {
5 addReply(c,shared.nullbulk);
6 }
7 return;
8 } else {
9 if (o->type != REDIS_HASH) {

10 addReply(c,shared.wrongtypeerr);
11 return;
12 }
13 }
14 addReplySds(c,sdscatprintf(sdsempty(),"*%d\r\n",c

->argc-2));

Listing 1. Original (correct) version of the hmgetCommand function
in Redis.

1 robj *o, *value;
2 o = lookupKeyRead(c->db,c->argv[1]);
3 if (o != NULL && o->type != REDIS_HASH) {
4 addReply(c,shared.wrongtypeerr);
5 }
6 addReplySds(c,sdscatprintf(sdsempty(),"*%d\r\n",c

->argc-2));
7 for (i = 2; i < c->argc; i++) {
8 if (o != NULL && (value = hashGet(o,c->argv[i]))

!= NULL) {
9 addReplyBulk(c,value);

10 decrRefCount(value);
11 } else {
12 addReply(c,shared.nullbulk);
13 }
14 }

Listing 2. Refactored (buggy) version of the hmgetCommand function
in Redis.

one that fixed it. While this bug does not fit within the pattern
targeted by MX (where a newer revision introduces the bug),
from a technical perspective it is equally challenging. MX is
able to successfully run the two versions in parallel, and help
the old version survive the crash bug.

D. Ability to run distant versions

In the previous sections, we have shown how MX can
help software survive crash bugs, by running two consecutive
versions of an application, one which suffers from the bug,
and one which does not. One important question is how far
apart can be the versions run by MX. To answer this question,
we determined for each of the bugs discussed above the most
distant revisions that can be run together to survive the bug.

For the Coreutils benchmarks, we are able to run versions
which are hundreds of revisions apart: 1,124 revisions (corre-
sponding to over one year and seven months of development
time) for the md5sum/sha1sum bug; 2,937 revisions (over
four years of development time) for the mkdir/mkfifo/mknod
bug; and 1,201 revisions (over two years and three months of
development time) for the cut bug.

The most distant versions for the first Lighttpd bug are
approximately two months apart and have 87 revisions in-
between, while the most distant versions for the second Lighttpd
bug are also approximately two months apart but have only
12 revisions in-between. Finally, the most distant versions for
the Redis bug are 27 revisions and 6 days apart.

Of course, it is difficult to draw any general conclusions from
only this small number of data points. Instead, we focus on
understanding the reasons why MX couldn’t run farther apart
versions for the bugs in Lighttpd and Redis (we ignore Coreutils,
for which we can run very distant versions). For Lighttpd issue
#2169, the lower bound is defined by a revision in which a pair
of geteuid() and getegid() calls are replaced with a single
call to issetugid() to allow Lighttpd to start for a non-root
user with GID 0. MX currently does not support changes to
the order of system calls, but we believe this limitation could
be overcome by using peephole-style optimisations [1], which
would allow MX to recognise that the pair geteuid() and
getegid() could be matched with the call to issetugid().
The upper bound for Lighttpd issue #2169 adds a read call
to /dev/[u]random, in order to provide a better entropy

source for generating HTTP cookies. This additional read call
changed the sequence of system calls, which MX cannot handle.

For Lighttpd issue #2140, both the lower and the upper
bounds are caused by a change in a sequence of read()
system calls. We believe this could be optimised by allowing
MX to recognise when two sequences of read system calls are
used to perform the same overall read.

For the Redis bug, the lower bound is given by the revision in
which the HMGET command was first implemented. The upper
bound is defined by a revision which changes the way error
responses are being constructed and reported, which results in
a very different sequence of system calls.

E. Performance Overhead

We ran our experiments on a four-core server with 3.50 GHz
Intel Xeon E3 and 16 GB of RAM running 64-bit Linux v3.1.9.

SPEC CPU2006. To measure the performance overhead of
our prototype, we first used the standard SPEC CPU200615

benchmark suite. Figure 4 shows the performance of MX
running two instances of the same application in parallel,
compared to a native system. The execution time overhead of
MX varies from 3.43% to 105.16% compared to executing just
a single version, with the geometric mean at 17.91%.

Coreutils. The six Coreutils applications discussed in §V-A
are mostly used in an interactive fashion via the command-line
interface (CLI). For such applications, a high performance
overhead is acceptable as long as it is not perceptible to the
user; prior studies have shown that response times of less than
100ms typically feel instantaneous [7]. In many common use
cases (e.g. creating a directory, or using cut on a small text
file), the overhead of MX was imperceptible—e.g. creating a
directory takes around 1ms natively and 4ms with MX. For the
three utilities that process files, we calculated the maximum
file size for which the response time with MX stays under the
100ms threshold. For cut, the maximum file size is 1.10MB
(with an overhead of 14.08×), for md5sum 1.25MB (16.23×
overhead), and for sha1sum 1.22MB (12.00× overhead).

Redis and Lighttpd. To measure the performance overhead
for Redis, we used the redis-benchmark16 utility, which is

15http://www.spec.org/cpu2006/
16http://redis.io/topics/benchmarks
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Fig. 4. Normalised execution times for the SPEC CPU2006 benchmark suite running under MX.

part of the standard Redis distribution and simulates GET/SET
operations done by N clients concurrently, with default work-
load. For Lighttpd, we used the http_load17 multiprocessing
test client that is also used by the Lighttpd developers. Both
of these standard benchmarks measure the end-to-end time
as perceived by users. As a result, we performed two sets of
experiments: (1) with the client and server located on the same
machine, which represents the worst case performance-wise
for MX; and (2) with the client and server located on different
continents (one in England and the other in California), which
represents the best case.

The overhead for Redis varies, depending on the operation
being performed, from 1.00× to 1.05× in the remote scenario,
and from 3.74× to 16.72× in the local scenario. The overhead
for Lighttpd varies from 1.01× to 1.04× in the remote scenario,
and from 2.60× to 3.49× in the local scenario. Despite the
relatively large overhead in the local experiments, the remote
overhead is negligible because times are dominated by the
network latency (which in our case is over 150ms).

As a result, we believe MX is most suitable for scenarios for
which its execution overhead does not degrade the performance
of the end-to-end task, such as the remote Redis and Lighttpd
scenarios discussed above, or interactive tasks such as those
performed using command-line utilities, where users would not
notice the overhead as long as the response time stays within
a certain range.

Finally, we would like to emphasise that our current
prototype has not been optimised for performance, and we
believe its overhead can still be significantly reduced. For
example, we could synchronise versions at a coarser granularity,
by using an epoch-based approach [29], or we could improve
our checkpointing mechanism by implementing it as a loadable
kernel module that only stores the part of the state needed for
recovery [27].

VI. DISCUSSION

This section discusses in more detail the scope of our
approach with regard to the type of software updates suitable
to multi-version execution and the different trade-offs involved.

17http://www.acme.com/software/http load/

Types of code changes. In order for MX to be successful,
the external behaviour of the versions that are run in parallel
has to be similar enough to allow us to synchronise their
execution. Our empirical study in §III shows that changes to
the external behaviour of an application are often minimal, so
our approach should work well with versions that are not too
distant from one another. Similarly, our system relies on the
assumption that versions re-converge to the same behaviour
after a divergence. As a result, we believe MX would be a good
fit for applications that perform a series of mostly independent
requests, such as network servers. These applications are usually
structured around a main dispatch loop, which provides a useful
re-convergence point. Our approach is also suitable to local
code changes, which have small propagation distances, thus
ensuring that the different versions will eventually re-converge
to the same behaviour.

Trade-offs involved. Our approach is targeted toward
scenarios where the availability, reliability and security of
a software system is more important than strict correctness,
high performance and low energy consumption.

In terms of correctness guarantees, MX is similar to previous
approaches such as failure oblivious computing [23] which
may sacrifice strict correctness for increased availability and
security (see §IV-B for details regarding possible problems
caused by MX). However, MX alleviates this problem by using
a previously correct piece of code to execute through the
crash, and by discovering most potential problems by regularly
checking if the two versions have the same external behaviour.
Finally, note that MX always reverts to running a single version
when a non-resolvable divergence is detected.

MX incurs a performance overhead, as discussed in §V-E.
In our experience, MX is readily deployable to interactive
applications such as command-line utilities, text editors and
other office tools, where the performance degradation is not
noticeable to the user. We believe it is also applicable to server
applications where availability is more important than high per-
formance. MX is not applicable to patches that fix performance
bugs, as the system runs no faster than the slowest version.

Our approach of using idle CPU time to run additional
versions also increases energy consumption. However, it is



interesting to note that idle CPUs are not “free” either: even
without considering the initial cost of purchasing the cores left
idle, an energy-efficient server consumes half its full power
when doing virtually no work—and for other servers, this ratio
is usually much worse [2].

VII. RELATED WORK

We have introduced the idea of multi-version software
updates in a HotSWUp workshop position paper [5].

N-version programming paradigm. The original idea of
concurrently running multiple versions of the same application
was first explored in the context of N -version programming,
a software development approach introduced in the 1970s in
which multiple teams of programmers independently develop
functionally equivalent versions of the same program in order
to minimise the risk of having the same bugs in all versions [8].
During runtime, these versions are executed in parallel and
majority voting is used to continue in the best possible way
when a divergence occurs.

Cook and Dage [9] proposed a multi-version framework
for upgrading components. Users formally specify the specific
input subdomain that each component version should handle,
after which versions are run in parallel and the output of the
version whose domain includes the current input is selected
as the overall output of the computation. The system was
implemented at the level of leaf procedures in the Tcl language.
The key difference with MX is that this framework requires
a formal description of what input domain should be handled
by each version; in comparison, MX targets crash bugs and is
fully automatic. Moreover, MX’s goal is to have all versions
alive at all times, so crash recovery plays a key role. Finally,
MX has to carefully synchronise access to shared state, which
is not an issue at the level of Tcl leaf procedures.

More recently, researchers have proposed additional tech-
niques that fit within the N -version programming paradigm,
e.g. by using heap over-provisioning and full randomisation of
object placement and memory reuse to run multiple replicas
and reduce the likelihood that a memory error will have
any effect [4], employing complementary thread schedules to
survive concurrency errors [29], or using genetic programming
to automatically generate a large number of application variants
that can be combined to reduce the probability of failure or
improve various non-functional requirements [15]. We have
also argued that automatically generated software variants are
a good way for exploiting the highly parallel nature of modern
hardware platforms [6].

Cox et al. [11] propose a general framework for increasing
application security by running in parallel several automatically-
generated diversified variants of the same program. The
technique was implemented in two prototypes, one in which
variants are run on different machines, and one in which they
are run on the same machine and synchronised at the system
call level, using a modified Linux kernel. Within this paradigm,
the Orchestra framework [24] uses a modified compiler to
produce two versions of the same application with stacks
growing in opposite directions, runs them in parallel on top
of an unprivileged user-space monitor, and raises an alarm if

any divergence is detected to protect against stack-based buffer
overflow attacks.

There are two key differences between our approach and the
work discussed in the last two paragraphs. First, we do not rely
on automatically-generated variants, but instead run in parallel
existing software versions, which raises a number of different
technical challenges. Second, this body of work has mostly
focused on detecting divergences, while our main concern is to
survive them (keeping all versions alive), in order to increase
both the security and availability of the overall application.

An approach closer to the original N-version programming
paradigm is Cocktail [31], which proposes the idea of running
different web browsers in parallel under the assumption that any
two of them are unlikely to be vulnerable to the same attacks.
Compared to MX and other techniques inspired by the N-
version programming paradigm, Cocktail’s task is simplified by
exclusively targeting web browsers, which implement common
web standards.

Online and offline testing. Back-to-back testing [30], where
the same input is sent to different variants or versions of an
application and their outputs compared for equivalence, has
been used since the 1970s. More recently, delta execution [28]
proposes to run two different versions of a single application,
splitting the execution at points where the two versions differ,
and comparing their behaviour to test the patch for errors and
validate its functionality. Band-aid patching [25] proposes an
online patch testing system that also splits execution before a
patch, and then retroactively selects one code version based
on certain criteria. Similarly, Tachyon [20] is an online patch
testing system in which the old and the new version of an
application are run concurrently; when a divergence is detected,
the options are to either halt the program, or to create a manual
rewrite rule specifying how to handle the divergence.

The idea of running multiple executions concurrently has also
been used in an offline testing context. For instance, d’Amorin
et al. [14] optimise the state-space exploration of object oriented
code by running the same program on multiple inputs simulta-
neously, while Kim et al. [17] improve the testing of software
product lines by sharing executions across a program family.

By comparison with this body of work, our focus is on man-
aging divergences across software versions at runtime in order
to keep the application running, and therefore runtime deploy-
ment and automatic crash recovery play a central role in MX.

Software updating. Dynamic software updating (DSU)
systems such as Ginseng [21], UpStare [19] or Kitsune [16]
are concerned with the problem of updating programs while
they are running. As opposed to MX, the two versions co-exist
only for the duration of the software update, but DSU and the
REM component of MX face similar challenges when switching
execution from one version to another. We hope that some of
the technique developed in DSU research will also benefit the
recovery mechanism of MX and vice versa.

Other prior work on improving software updating has looked
at different aspects related to managing and deploying new
software versions. For example, Beattie et al. [3] have consid-
ered the issue of timing the application of security updates,
while Crameri et al. [13] proposed a framework for staged



deployment, in which user machines are clustered according
to their environment and software updates are tested across
clusters using several different strategies. In relation to this
work, MX tries to encourage users to always apply a software
update, but it would still benefit from effective strategies to
decide what versions to keep when resources are limited.

Surviving software failures. MX’s main focus is on sur-
viving errors. Prior work in this area has employed several
techniques to accomplish this goal. For example, Rx [22]
helps applications recover from software failures by rolling
back the program to a recent checkpoint upon a software
failure, and then re-executing it in a modified environment.
MX similarly rolls back execution to a recent checkpoint, but
instead of modifying the environment, it uses the code of a
different version to survive the bug. The two approaches are
complementary, and could be easily combined to support a
larger number of errors and application types.

Failure-oblivious computing [23] helps software survive
memory errors by simply discarding invalid writes and fabri-
cating values to return for invalid reads, enabling applications
to continue their normal execution path. Similar to failure-
oblivious computing, execution transactions [26] help survive
software bugs by terminating the function in which the bug
has occurred and continuing to execute the code immediately
following the corresponding function call. Our approach shares
some of the philosophy of these two techniques, as we cannot
always guarantee that the crashing version will correctly execute
through the divergence when using the other version’s code.
However, by using a previously correct piece of code to execute
through the crash and regularly checking for divergences in the
external behaviour, our approach provides stronger guarantees
than those obtained by fabricating read values or terminating
the function in which the bug occurred.

VIII. CONCLUSION

Software updates are an important part of the software
development and maintenance process. Unfortunately, they
also present a high failure risk, and many users refuse to
upgrade their software, relying instead on outdated versions,
which often leave them exposed to known software bugs and
security vulnerabilities.

In this paper we have proposed a novel multi-version
execution approach for improving the software update process.
Whenever a new program update becomes available, instead of
upgrading the software to the newest version, we run the new
version in parallel with the old one, and carefully synchronise
their execution to create a more secure and reliable multi-
version application.

Our ultimate goal is to enable users to benefit from the
additional features and bug fixes provided by recent versions,
without sacrificing the stability and security of older versions.
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