
Targeted Program Transformations
for Symbolic Execution

Cristian Cadar
Imperial College London

c.cadar@imperial.ac.uk

ABSTRACT
Semantics-preserving program transformations, such as refac-
torings and optimisations, can have a significant impact on
the effectiveness of symbolic execution testing and analy-
sis. Furthermore, semantics-preserving transformations that
increase the performance of native execution can in fact
decrease the scalability of symbolic execution.

Similarly, semantics-altering transformations, such as type
changes and object size modifications, can often lead to
substantial improvements in the testing effectiveness achieved
by symbolic execution in the original program.

As a result, we argue that one should treat program trans-
formations as first-class ingredients of scalable symbolic ex-
ecution, alongside widely-accepted aspects such as search
heuristics and constraint solving optimisations. First, we
propose to understand the impact of existing program trans-
formations on symbolic execution, to increase scalability and
improve experimental design and reproducibility. Second, we
argue for the design of testability transformations specifically
targeted toward more scalable symbolic execution.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execution

Keywords
Testability transformations, dynamic symbolic execution

1. BACKGROUND
Dynamic symbolic execution (DSE) [3] has gained tremen-

dous popularity in the last decade, becoming part of the
standard toolbox of techniques in many computer science
fields including software engineering, programming languages,
software testing, verification, security, and computer systems.
The technique has enabled a wide range of applications,
including automatic detection of bugs and security vulner-
abilities, recovery of corrupt documents, patch generation,
and automatic debugging, among many others.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’15, August 31-September 04, 2015, Bergamo, Italy
Copyright is held by the owner/author. Publication rights licensed to ACM.
ACM 978-1-4503-3675-8/15/08...$15.00
DOI: http://dx.doi.org/10.1145/2786805.2803205

At a high level, DSE is a program analysis technique that
allows the automatic exploration of paths in a program. It
works by executing the program on a symbolic input, which is
initially unconstrained. As the program runs, any operations
that depend on the symbolic input add constraints on the
input. For example, if the program input is represented by
variable x, than the statement y = x + 1 would add the
constraint that y = x + 1. Most importantly, whenever a
branch that depends (directly or indirectly) on the symbolic
input is reached, the technique first checks if both sides of
the branch are feasible, and if so, it forks execution and
follows each side separately, adding the constraint that the
branch condition is true on the then side and false on the else
side. For example, given the symbolic input x, the symbolic
execution of the branch if (x == 10) would result in two
paths being explored, one on which x = 10 and one on which
x 6= 10.

There are two main challenges in DSE: path explosion and
constraint solving. In all but the smallest programs, the
number of paths is extremely large, being typically at least
exponential in the number of static branches in the code. In
the presence of loops, path explosion gets even worse, as a
loop with n iterations having inside a branch that depends
on the symbolic input can spawn up to 2n paths. Existing
research has proposed a range of solutions, such as search
heuristics, redundant path elimination, function summaries
and path merging. While these solutions have made the
approach practical for several types of applications, path
explosion still represents an important challenge in DSE.

The second main challenge is related to constraint solving.
The problem is compounded by two factors: first, DSE can
generate large expensive constraints, and second, DSE issues
a constraint solving query at every single branch that depends
on a symbolic value, to determine the feasibility of each side of
the branch. Despite significant progress in constraint solving
technology during the recent years [5], constraint solving
continues to be one of the main bottlenecks of DSE, and it is
absolutely essential for the success of DSE to devise effective
techniques that target the kind of constraints generated
during symbolic execution.

2. TARGETED PROGRAM TRANSFORMA-
TIONS FOR SYMBOLIC EXECUTION

We believe that the scalability of dynamic symbolic exe-
cution can be improved via targeted program transforma-
tions, referred in literature as testability transformations [8].
The first insight is that semantically-equivalent programs
can differ substantially with respect to the effectiveness of

int get value(int k) {
return k∗k∗k;

}

// precond: 0 <= k < 1000
int foo(unsigned k) {

if (get value(k) > 100000 ||
get value(k−1) > 100000)
return 0;

else return 1;
}

(a)

int values[1000] = {0, 1, 8, 27, 64, 125,
216, 343, 512, 729, 1000, 1331, 1728, 2197,
2744, 3375, 4096, 4913, 5832, ...};

// precond: 0 <= k < 1000
int foo(unsigned k) {

if (values [k] > 100000 ||
values [k−1] > 100000)
return 0;

else return 1;
}

(b)

Figure 1: The C code in (a) is transformed into the code in (b) using a precomputed lookup table.

DSE to explore the program state space. These differences
can be significant: as we are going to show below, simple
semantics-preserving transformations can lead to orders of
magnitude difference in performance. The second insight
is that semantics-altering transformations can also substan-
tially improve the performance of symbolic execution and
the quality of testing of the original program.

2.1 Semantics-preserving transformations
One might be initially surprised to find out that the scal-

ability of symbolic execution testing can vary dramatically
across semantically-equivalent programs. Furthermore, it can
be even more unexpected that transformations that increase
the performance of native execution can in fact decrease the
scalability of symbolic execution. However, this is exactly
what often happens in practice, requiring us to rethink the
type of transformations that should be applied in a DSE
context, and to consider the opportunity of designing trans-
formations that are targeted toward more scalable symbolic
execution.

Program transformations can have an impact on both
constraint solving and path exploration. Below, we give a
couple of examples in each category.

Transformations affecting constraint solving. To il-
lustrate the potential impact of program transformations
on constraint solving, consider the function foo() in Fig-
ure 1a, which we assume is called with an argument be-
tween 0 (inclusive) and 1000 (exclusive). In turn, foo() calls
get_value() twice. If foo() is called many different times,
then precomputing the result of get_value() can lead to
significant performance gains. Assume the developer hand-
optimised the function into the code of Figure 1b. While
this speeds up native execution, the performance of DSE
drops significantly. For example, running foo a single time
with the symbolic executor KLEE1 by treating its integer
argument as symbolic takes 0.2 seconds2 for the code in
Figure 1a, and 50 seconds for the code in Figure 1b, which
represents a 250 times slowdown! The reason is that with-
out the optimisation, the constraint solver has to deal with
satisfiability queries of the form k ∗ k ∗ k > 100000, while
with the optimisation, it has to deal with queries of the form

1KLEE [1] is a state-of-the-art dynamic symbolic execution
engine based on the LLVM compiler infrastructure. It is
available as open-source at http://klee.github.io/
2On an Intel(R) Core(TM)2 Duo CPU E8400 at 3.00GHz,
with 8GB RAM, using KLEE based on LLVM 2.9.

(values[k] > 100000) ∧ (values[0] = 0) ∧ (values[1] = 1) ∧ ...,
the latter creating a much larger formula in the solver. In
our experience, DSE often struggles with large tables of con-
stants, and one way to deal with this problem would be to
reverse such precomputed lookup table optimisations. In
other words, a DSE-friendly testability transformation for
code fragments involving large constant tables would be to
replace them with mathematical formulas. For example, a
simple polynomial interpolation method [7] might often be
successful.

As a second example, consider common optimisations
performed by modern compilers, such as constant folding,
dead store elimination, inline expansion, loop fission, loop-
invariant code motion, loop unrolling, and test reorder-
ing. While many compiler optimisations do help symbolic
execution—and our tool KLEE implements various compiler-
style optimisations in order to improve performance [1]—
surprisingly, some compiler optimisations that significantly
improve native program performance can in fact significantly
hurt the symbolic execution of a program [6].

For example, the code in Figure 2a is optimised via strength
reduction into the code in Figure 2b. The strength reduction
optimisation aims to replace expensive operations such as
multiplication with less expensive ones such as addition. In
this example, the multiplication of the loop index is replaced
with addition by using the auxiliary variable k. While this
optimisation does result in faster native code, the perfor-
mance of DSE degrades significantly. Treating variable c as
the symbolic input, the code in Figure 2a takes 2.2 seconds to
run with KLEE, while the code in Figure 2b takes 20 minutes,
which represents a 545 times slowdown! The reason is that
the latter constructs very large chains of addition operations,
which are much more expensive for the underlying constraint
solver than multiplications by a constant. Therefore, a DSE-
friendly testability transformation would be the reverse of
strength reduction—called induction variable substitution
and typically applied in order to parallelise loops.

Transformations affecting path exploration. Program
transformations could also have a significant effect on path
exploration. As a first example, consider the code in Figure 3,
which involves a switch statement and which has a division
by zero bug for x6=1,2,3,4 and y=0. A switch statement is
a higher-level programming language construct, and most
DSE tools would first transform it into lower-level constructs
(or allow an external compiler to do so). The way in which
the switch statement is transformed has a significant influ-

int foo(int c) {
int y [500], i ;

for (i = 0; i < 500; i++) {
y[i] = c ∗ i ;

if (y[i] % 2 == 0)
printf ("Yes\n");

else printf ("No\n");
}

}

(a)

int foo(int c) {
int y [500], i ;
int k = 0;
for (i = 0; i < 500; i++) {

y[i] = k; k = k + c;

if (y[i] % 2 == 0)
printf ("Yes\n");

else printf ("No\n");
}

}

(b)

Figure 2: The C code in (a) is transformed via strength reduction into the code in (b). Conversely, the code in (b) is transformed
via induction variable substitution into the code in (a).

ence on the path exploration and the ability to find the bug.
For instance, if the transformation employs a binary search
algorithm on the switch expression range, KLEE configured
to use breadth-first search (BFS) takes 2.3 seconds to hit
the division by zero bug. By contrast, if the transformation
creates a linear chain of if statements, then KLEE does not
find the bug within a time limit of one hour. While this
result is unsurprising if we think about the structure of the
resulting control-flow graph, it shows that program transfor-
mations can have an important impact on path exploration
in DSE, and symbolic execution tools could use them to their
advantage. For example, if a broad exploration of the search
space is desired, then one should use BFS and transform
switch statements using binary search.

As a second simple example, consider the code in Figure 4,
which counts the number of positive numbers in an array of
ten elements, and reports Success if all of them are positive.
Compiling this program with LLVM using optimisation flag
-O0 results in 1024 paths explored by KLEE, taking a total
of 23 seconds. However, compiling this program with LLVM
using optimisation flag -O2 results in only two paths being
explored in 0.04 seconds. The reason is that the -O2 optimi-
sations transform the branch inside the loop into a select

operation (count = select(a[i] > 0, count+1, count)),
which KLEE sends directly to the constraint solver without
having to fork. In essence, the optimisation has merged the
paths inside the loop!

Transformations involving switch and select statements
are not the only examples: other program transformations
such as those splitting or merging loops are likely to have a
similar effect on path exploration, and should be treated as
another mechanism to improve program exploration, similarly
to how search heuristics are designed.

As a final example applicable to both constraint solving
and path exploration, consider running DSE with the same
settings (e.g., search heuristics) on different versions of the
same program: the original source code, the code compiled
to an intermediate language, the x86 binary, the source
code raised from the binary, etc. While all these programs
are semantically equivalent, the performance of DSE can
vary significantly; thinking about these versions in terms of
semantics-preserving program transformations might provide
a better understanding of the tradeoffs involved in operating
at different levels of abstraction.

int expensive(int x) {
int bits = 0, i ;
for (i=0; i<32; i++)

if (x & (1 << i))
bits++;

return bits;
}

int foo(int x, int y) {
switch (x) {

case 1: return expensive(y+1);
case 2: return expensive(y+2);
case 3: return expensive(y+3);
case 4: return expensive(y+4);
default: return x/y;

}
}

Figure 3: Example showing the impact of switch transfor-
mations on DSE.

2.2 Semantics-altering transformations
As argued in prior work [8], program transformations that

do not preserve the semantics of the program can nevertheless
improve the testing of the original program. In the context
of symbolic execution, this can be an effective mechanism
for improving its scalability.

One example are transformations whose main goal is to
reduce the scope of the analysis to a subset of the allowable
program behaviours. As a first example, consider a program
that uses floating-point numbers. Most DSE engines cannot
handle symbolic floating-point computations, mainly due to
the poor scalability of floating-point constraint solvers [4]. A
possible testability transformation would be to replace all
floating-point variables with integers or rational numbers,
allowing DSE to make progress, while exploring a limited
subset of behaviours. Of course, testing a subset of program
behaviours is better than not being able to test a program
at all, and in practice it may often be enough to discover
important errors or cover interesting parts of the code. Note
also that such a transformation would not strictly explore a
subset of possible behaviours; due to differences in the arith-
metic overflow behaviour between floating point numbers
and integers/rationals, some infeasible executions might be

int foo(int a [10]) {
int count=0, i;
for (i=0; i<10; i++)

if (a[i] > 0)
count++;

if (count == 10)
printf ("Success\n");

return count;
}

Figure 4: Example showing the impact of compiler optimisa-
tions of path exploration.

introduced. But this might be easily tolerable in practice,
especially since DSE has the ability to generate concrete test
inputs, which for example could be rerun to confirm any
reported bugs.

As a second example, one could automatically shrink large
buffers that pose scalability challenges in DSE, or assign
concrete values to parts of a symbolic input. Such testability
transformations are often performed manually by DSE testers,
but could be easily automated.

3. ENVISAGED IMPACT
Targeted program transformations can have a significant

impact on symbolic execution. First, they can lead to in-
creased scalability: while the examples in this paper are toy
programs, they illustrate well the way in which testability
transformations could help address the two main challenges
of DSE, namely speed up constraint solving and improve
path exploration.

Second, they can improve experimental design and repro-
ducibility of results, as program transformations are often
implicitly performed by the compiler or the analysis frame-
work. This potential confounding factor is almost always
overlooked during experimental design, rendering compar-
isons across projects difficult to assess. For example, starting
with the same source code and using the same algorithmic
settings, a tool running on top of CIL3 (such as EXE [2])
and one running on top of LLVM4 (such as KLEE [1]) can
perform very differently, simply because CIL and LLVM ap-
ply different transformations to the original program code.
Even more, the same tool with the same settings, but using
two different versions of the underlying compiler—say KLEE
on top of LLVM 2.3 and KLEE on top of LLVM 2.9—can
result in widely different behaviour, simply because the dif-
ferent compiler versions perform a (slightly) different set of
optimisations!

4. RELATED WORK
This paper is inspired by the author’s experience with the

significant variations in KLEE’s performance when changing
LLVM versions or refactoring the code under analysis; this
has also been reported by other KLEE users. Recent work by
Wagner et al. [9] and Dong et al. [6] more rigorously showed
that compiler optimisations can influence DSE performance.

3https://www.cs.berkeley.edu/~necula/cil/
4http://llvm.org/

In particular, Wagner et al. argued for, and designed, a
series of compiler optimisations focusing on improving path
exploration in DSE. In this paper, we provide additional
evidence of the effect of semantics-preserving trasformations
(including compiler optimisations) on both path exploration
and constraint solving, and go beyond semantics-preserving
optimisations to also look at semantics-altering ones.

The idea of using program transformations to improve
testability was first introduced by Harman et al. [8] in the
context of search-based software testing. For example, in evo-
lutionary testing, boolean flags involved in branch predicates
induce two plateaux on the search space, making evolutionary
testing no better than random testing; an effective solution
to this problem is to perform a program transformation that
replaces the flag variable with the expression that was used
to compute it.

5. CONCLUSION
This paper argues for treating program transformations

as first-class ingredients of symbolic execution, alongside
widely-accepted aspects such as constraint solving and search
heuristics. Program transformations occur in many different
forms—e.g., refactorings, manual optimisations, translation
into intermediate languages and compiler optimisations—and
can have a significant impact on the performance of DSE.
Understanding existing optimisations can allow developers
to disable the ones that hurt scalability and enable the ones
that increase it, as well as to improve experimental design
and reproducibility. Furthermore, we believe that the design
of DSE-friendly testability transformations can have the
potential of becoming an important ingredient of scalable
symbolic execution testing and analysis.

Acknowledgements. I thank Mark Harman and Paul
Marinescu for their feedback, and the EPSRC for supporting
this research through an EPSRC Early-Career Fellowship.

6. REFERENCES
[1] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for
complex systems programs. In OSDI’08.

[2] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: Automatically generating inputs of
death. In CCS’06.

[3] C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. CACM, 56(2):82–90, 2013.

[4] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic
crosschecking of floating-point and SIMD code. In
EuroSys’11.

[5] L. De Moura and N. Bjørner. Satisfiability modulo
theories: introduction and applications. CACM,
54(9):69–77, Sept. 2011.

[6] S. Dong. An empirical study of the influence of compiler
optimizations on symbolic execution. Master’s thesis,
University of Texas at Austin, 2014.

[7] R. W. Hamming. Numerical Methods for Scientists and
Engineers. Dover Publications, 1987.

[8] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability transformation.
TSE, 30(1):3–16, Jan. 2004.

[9] J. Wagner, V. Kuznetsov, and G. Candea. -Overify:
Optimizing programs for fast verification. In HotOS’13.

