
Constraint Solving Challenges in
Dynamic Symbolic Execution

Cristian Cadar
Department of Computing

Imperial College London

1st International SAT/SMT Solver Summer School

June 12th 2011 • MIT, Cambridge, MA, USA

Joint work with Dawson Engler, Daniel Dunbar

Peter Collingbourne, Paul Kelly, Vijay Ganesh, David Dill, Junfeng Yang

P. Pawlowski, J. Song, T. Ma, P. Pietzuch, P. Boonstoppel, P. Twohey, C. Sar

• Software complexity

– Massive amounts of code

– Tricky control flow

– Complex dependencies

– Abusive use of pointer operations

– Intensive interaction w/ environment

• E.g., data from OS, network, etc.

• Current testing approaches are insufficient

– Most projects still use only manual (expensive) and/or

random testing (often ineffective)

Writing Correct Software Is Hard

Systems code

2/55

• Automatically generated high coverage test suites

– Over 90% on average on ~160 user-level apps

• Found bugs and security vulnerabilities in complex

software

– Including file systems, device drivers, computer

vision code, utilities, network servers, packet filters

Dynamic Symbolic Execution

• Let code to generate its own (complex) test cases!

3/55

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x = 1234

x < 0

x < 0 x 0

return x

x 1234

return -x

return -x

x = 1234

x =

x = -2

x = 3x = 1234

test1.out

test2.out test3.out

Toy Example

TRUE

TRUE FALSE

FALSE

Implicit checks before each

dangerous operation

• Null-pointer dereferences

• Buffer overflows

• Division/modulo by zero

• Assert violations

All-Value Checks

0 ≤ k< 4
TRUE FALSE

int foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . .

{ k = * }

. . .

All-value checks!

• Errors are found if any buggy

values exist on that path!

TRUE FALSE

Infeasible

. . .

0 ≤ k < 4 ¬ 0 ≤ k < 4

5/55

Implicit checks before each

dangerous operation

• Null-pointer dereferences

• Buffer overflows

• Division/modulo by zero

• Asserts violations

All-Value Checks

0 ≤ a[k]< 4
TRUE FALSE

int foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . .

Buffer overflow!

{ k = * }

. . .

All-value checks!

• Errors are found if any buggy

values exist on that path!

FALSETRUE

¬ 0 ≤ a[k] < 40 ≤ a[k] < 4

. . . k = 3

Dynamic (vs. Static) SymEx

• Each path explored separately as in regular testing

– EXE uses fork() system call to fork execution!

• Mixed concrete/symbolic execution

– All operations that do not depend on the symbolic

inputs are (essentially) executed as in the original code!

• E.g., malloc(5)allocates object on the heap in EXE

7/55

Dynamic (vs. Static) SymEx

Advantages:

– Ability to interact with the outside environment

• System calls, uninstrumented libraries

– Only relevant code executed symbolically

• Without the need to extract it explicitly

…and disadvantages:

– Can only explore a finite number of paths!

• Important to prioritize most “interesting” ones

8/55

Three tools: EGT, EXE, KLEE

EGT/EXE/

K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

C code

x 0
x 1234

9/55

Scalability Challenges

Path exploration
challenges

Constraint
solving

challenges

Path exploration
challenges

10/55

Constraint Solving Challenges

1. Accuracy: need constraint solver that allows bit-

level modeling of memory:

• Systems code often observes the same bytes in

different ways: e.g., using pointer casting to treat an

array of chars as a network packet, inode, etc.

• Bugs in systems code are often triggered by corner

cases such as arithmetic overflows

2. Performance: real programs generate expensive

constraints

11/55

STP

• Modern constraint solver, based on eager translation

to SAT (uses MiniSAT)

• Developed at Stanford by Ganesh and Dill, initially

targeted to (and driven by) EXE

• Two data types: bitvectors and arrays of bitvectors

• We model each memory block as an array of bitvectors

• We can translate all C expressions into STP constraints

with bit-level accuracy

– Main exception: floating-point
12/55

Constraint Solving: Performance

Constraint solving optimizations essential:

• STP optimizations

• Higher-level optimizations

13/55

• Many programs generate large constraints

involving arrays with symbolic indexes

• STP handles this via array-based refinement

Reasoning about Arrays in STP

14/55

Reasoning about Arrays in STP

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Expands each formula by n∙(n-1)/2 terms, where

n is the number of syntactically distinct indexes

15/55

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Under-approximation

UNSATISFIABLE

Original formula

UNSATISFIABLE

16/55

Array-based Refinement in STP

i1 = 1

i2 = 2

i3 = 3

v1 = e1= 1

v2 = e2= 2

v3 = e3= 3

(a[1] = 1) Λ (a[2] = 2) Λ

(a[3] = 3) Λ (1+2+3 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

17/55

Array-based Refinement in STP

i1 = 2

i2 = 2

i3 = 2

v1 = e1= 1

v2 = e2= 2

v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ

(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

18/55

Array-based Refinement in STP

i1 = 2

i2 = 2

i3 = 2

v1 = e1= 1

v2 = e2= 2

v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ

(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

19/55

Evaluation

Solver Total time (min) Timeouts

STP (baseline) 56 36

STP (array-based refinement) 10 1

 8495 test cases from our

symbolic execution benchmarks

 Timeout set at 60s (which are

added as penalty), underestimates

performance differences

20/55

Higher-Level Constraint

Solving Optimizations

• Two simple and effective optimizations

– Eliminating irrelevant constraints

– Caching solutions

• Dramatic speedup on our benchmarks

21/55

Eliminating Irrelevant Constraints

• In practice, each branch usually depends on a small number
of variables

x + y > 10

z & -z = z

x < 10 ?

…

…

if (x < 10) {

…

}

22/55

Caching Solutions

2 y < 100

x > 3

x + y > 10

x = 5

y = 15

2 y < 100

x + y > 10

2 y < 100

x > 3

x + y > 10

x < 10

• Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5

y = 15

x = 5

y = 15

23/55

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

 Base
 Irrelevant Constraint Elimination
 Caching
 Irrelevant Constraint Elimination + Caching

Dramatic Speedup

Aggregated data over 73 applications

T
im

e
 (

s)

Executed instructions (normalized)
24/55

Statically Merging Paths

if (a > b)
max = a;

else max = b;

a > b

a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
max = a;

else max = b;

Phi-Node Folding (when no side effects)

max = select(a>b, a, b)

Statically Merging Paths

for (i=0; i < N; i++) {
if (a[i] > b[i])

max[i] = a[i];
else max[i] = b[i];

}

morph computer vision algorithm: 2256 1

• Default: 2N paths

• Phi-node folding: 1 path

Path merging
Outsourcing problem

to constraint solver
≡

(especially problematic for solvers

optimized for conjunctions of constraints)
26/55

Evaluation

• Motivation and Overview

• Example and Basic Architecture

• Constraint Solving Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

– Attack generation

27/55

GNU Coreutils Suite

• Core user-level apps installed on many UNIX systems

• 89 stand-alone (i.e. excluding wrappers) apps (v6.10)

– File system management: ls, mkdir, chmod, etc.

– Management of system properties: hostname, printenv, etc.

– Text file processing : sort, wc, od, etc.

– …

Variety of functions, different authors,

intensive interaction with environment

Heavily tested, mature code

28/55

Coreutils ELOC (incl. called lib)

5

53

16

6
4

1
3 2

0

10

20

30

40

50

60

20
00

-3
00

0

30
00

-4
00

0

40
00

-5
00

0

50
00

-6
00

0

60
00

-7
00

0

70
00

-8
00

0

80
00

-9
00

0

90
00

-1
00

00

Executable Lines of Code (ELOC)

N
um

b
e
r

of
 a

pp
li
ca

ti
on

s

29/55

Methodology

• Fully automatic runs

• Run KLEE one hour per utility, generate test cases

• Run test cases on uninstrumented version of utility

• Measure line coverage using gcov
– Coverage measurements not inflated by potential bugs

in our tool

30/55

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89

High Line Coverage
(Coreutils, non-lib, 1h/utility = 89 h)

Overall: 84%, Average 91%, Median 95%
16 at 100%

Apps sorted by KLEE coverage

C
ov

er
ag

e
 (

E
L
O

C
 %

)

31/55

9

-20%

0%

20%

40%

60%

80%

100%

Beats 15 Years of Manual Testing
K

L
E

E
 c

ov
e
ra

ge
 –

M
an

ua
l
co

ve
ra

ge

Avg/utility
KLEE 91%

Manual 68%

Apps sorted by KLEE coverage – Manual coverage

Manual tests also check correctness

32/55

Evaluation

• Motivation and Overview

• Example and Basic Architecture

• Constraint Solving Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

– Attack generation

33/55

Bug Finding Summary

Applications

UNIX file systems ext2, ext3, JFS

UNIX utilities Coreutils, Busybox, Minix suites

MINIX device drivers pci, lance, sb16

Library code PCRE, uClibc, Pintos

Packet filters FreeBSD BPF, Linux BPF

Networking servers udhcpd, Bonjour, Avahi, telnetd, WsMp3

Operating Systems HiStar kernel

• Most bugs fixed promptly

OpenCVComputer vision code

34/55

GNU Coreutils Bugs

• Ten crash bugs
– More crash bugs than approx previous three years combined

– KLEE generates actual command lines exposing crashes

35/55

md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

t1.txt: \t \tMD5(

t2.txt: \b\b\b\b\b\b\b\t

t3.txt: \n

t4.txt: A

Ten command lines of death

36/55

Experimental Evaluation

• Motivation and Overview

• Example and Basic Architecture

• Constraint Solving Challenges

• Results

– Coverage results

– Bug finding

– Crosschecking

– Attack generation

37/55

High-Level Semantic Bugs

via Crosschecking

Assume f(x) and f’(x) implement the same interface

1. Make input x symbolic

2. Run tool on assert(f(x) == f’(x))

3. Find mismatches!

38/55

What to Crosscheck?

Lots of available opportunities

• Different implementations of the same functionality

− e.g., libraries, servers, compilers

• Optimized versions of reference implementations

• Refactorings

• Reverse computation

• e.g., compress/uncompress

39/55

Coreutils vs. Busybox

UNIX utilities should conform to IEEE Std.1003.1

– Crosschecked pairs of Coreutils and Busybox utilities

– Busybox: implementation for embedded devices

– Found lots of mismatches

40/55

Mismatches Found

Input Busybox Coreutils

comm t1.txt t2.txt [doesn’t show diff] [shows diff]

tee - [copies once to stdout] [copies twice]

tee "" <t1.txt [infinite loop] [terminates]

cksum / "4294967295 0 /" "/: Is a directory"

split / "/: Is a directory"

tr [duplicates input] "missing operand"

[0 ‘‘<’’ 1] "binary op. expected"

tail –2l [rejects] [accepts]

unexpand –f [accepts] [rejects]

split – [rejects] [accepts]

t1.txt: a t2.txt: b (no newlines!)
41/55

SSE Optimizations in

Computer Vision Algorithms

• Computer vision algorithms often optimized to use

SSE instructions

• Operate on multiple data concurrently

• Provide significant speedup

• Translation to SSE is usually done manually

• Starting from a reference scalar implementation

SSE-optimized

computer vision

algorithm

crosscheck Original

computer vision

algorithm

42/55

• Computer vision algorithms make intensive use of

floating-point

• No constraint solvers for floating-point available

(IEEE 754 standard not pretty!)

• Recent development: FP internal support in CMBC

• Any other solvers that we can try?

Computer Vision Algorithms and

Floating Point Operations

43/55

• To ensure equality, the optimized SSE version needs to

build FP values in roughly the same way

• Observed developers try to mimic the scalar code using SSE

• Usually can cheaply prove/disprove equivalence via

Computer Vision Algorithms and

Floating Point Operations

expression

canonicalization

syntactical

expression matching
+

44/55

SSE Optimizations in OpenCV

OpenCV: popular

open-source computer

vision library from Intel

and Willow Garage

Corner detection algorithm

[from wikipedia.org]

45/55

OpenCV Results

• Crosschecked 51 SSE/scalar pairs

• Proved the bounded equivalence of 41

• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:

• Precision

• Rounding

• Associativity

• Distributivity

• NaN values

46/55

Example Source of Mismatches

min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) always returns false if one
of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

Could lead to arbitrarily large differences:

47/55

Experimental Evaluation

• Motivation and Overview

• Example and Basic Architecture

• Constraint Solving Challenges

• Evaluation

– Coverage results

– Bug finding

– Crosschecking

– Attack generation

48/55

Allow untrusted users to mount

regular files as disk images!

Trend in modern operating systems:

Attack Generation – File Systems

49/55

Attack Generation – File Systems

• Mount code is executed by the kernel!

• Attackers may create malicious disk images to

attack a system

50/55

Attack Generation – File Systems

ext2 ext3 JFS

10111001

01011100

= *

EXEmount()

ext2 / ext3 / JFS

01010110

11010100

01010111

00110101

. . .

51/55

Disk of death (JFS, Linux 2.6.10)

64th sector of a 64K file. Mount.

And PANIC your kernel!

Offset Hex Values

00000 0000 0000 0000 0000 0000 0000 0000 0000

.

08000 464A 3135 0000 0000 0000 0000 0000 0000

08010 1000 0000 0000 0000 0000 0000 0000 0000

08020 0000 0000 0100 0000 0000 0000 0000 0000

08030 E004 000F 0000 0000 0002 0000 0000 0000

08040 0000 0000 0000 0000 0000 0000 0000 0000

.

10000

52/55

Our techniques and tools can effectively:

– Generate high coverage test suites

• Over 90% on average on Coreutils and Busybox utilities

– Generate inputs exposing bugs and security

vulnerabilities in complex software

• Including file systems, device drivers, library code, utility

applications, network tools, packet filters

– Find semantic bugs via crosschecking

– Crosschecked Coreutils and Busybox utilities,

checked correctness of SSE optimizations

Dynamic Symbolic Execution:

Effective Testing of Complex Software

53/55

Symbolic Execution: Related Work

Dynamic symbolic execution for automatic test case generation:

• EGT paper: [Cadar and Engler 2005]

• Independent work at Bell Labs on DART [Godefroid, Klarlund, Sen 2005]

Very active area of research, e.g:

• SAGE, Pex @ Microsoft Research

• JPF-SE, Symbolic JPF @ NASA Ames

• CREST @ UC Berkeley

• S2E, Cloud9, Oasis @ EPFL

• BitBlaze, WebBlaze @ UC Berkeley

Symbolic execution for program testing introduced in the 1970s:

• James C. King. A new approach to program testing

International Conference on Reliable Software, April 1975

54/55

KLEE: Available as Open-Source

http://klee.llvm.org

Already used and extended in many interesting ways by

several research groups, in the areas of:

• wireless sensor networks

• schedule memoization in multithreaded code

• automated debugging

• exploit generation

• online gaming, etc.

55/55

