
Mx: Safe Software Updates
via Multi-version Execution

Petr Hosek Cristian Cadar
Software Reliability Group
Department of Computing

20th May 2013 Stanford University

2

Motivation

Software evolves, with new versions and patches being
released frequently

Software updates often present a high risk

Many users refuse to upgrade their software…

…relying instead on outdated versions flawed with
vulnerabilities or missing useful features and bug fixes

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.

Staged deployment in Mirage, an integrated software upgrade testing and distribution system. SOSP’07

Many admins (70% of those interviewed) refuse to upgrade

The fundamental problem with program maintenance is
that fixing a defect has a substantial (20-50%) chance
of introducing another. So the whole process is two
steps forward and one step back.

— Fred Brooks, 1975

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L.
How Do Fixes Become Bugs? ESEC/FSE’11

≥14.8~24.4% for major operating system fixes

“

”

3

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

Powers several popular sites such as YouTube, Wikipedia, Meebo

Single-threaded event-driven web server

April 2009 April 2010

Bug diagnosed

1 year

Old bug fixed,
New bug introduced Bug fixed

March 2010

File (re)compression in mod_compress_physical

if (use_etag)

}
 etag_mutate(con->physical.etag, srv->tmp_buf);

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

6

Goals

Improve the software update process to provide

Benefits of the newer version

Stability of the older version

7

Idea

Multi-version execution based approach

Run both versions in parallel

Synchronize the execution of the two versions

Use output of correctly executing version at any

given time

MultiCore CPUs becoming standard

Idle parallel resources, with no benefit to inherently sequential applications

8
Cadar, C., Pietzuch, P., Wolf, A. Multiplicity computing: A vision of software
engineering for next-generation computing platform applications. FoSER’10

9

Challenges of Multi-Version Execution

1.  Allowing multiple versions to run side-by-side

2.  Handling divergences and recovering from failures

10

Challenge 1: MV Execution Environment

Multi-version execution environment
Synchronize execution of multiple versions

Multi-version app acts as one to the external world

Reasonable performance overhead

Support for native applications

Operating System

Multi-version

application

Conventional

application

Mx

Synchronization

Synchronization possible at different levels of
abstraction/granularity

 Application input/outputs

 Library calls
 System calls

11

Synchronization in Mx

Synchronization (and virtualization) at the level of
system calls

12

Version 1
 Version 2

Mx

Operating System

System calls

System calls
 System calls

Advantages
 General (not app

specific)

 Small number of
system call types

General (not app specific)

Few system call types
(Mx needs to parse args)
Can handle unmodifed binaries

Synchronization in Mx

Synchronization and
virtualization at the level
of system calls

13

Mx

Operating System

System calls

System calls

System Calls Define External Behavior

14

...
write(1, "1\n", 2) = 2
write(1, "3\n", 2) = 2
...

int arr[] = { -3, -1, 2, -4 };
pos_neg(arr, 4);

Version 1

void pos_neg(int *a, size_t len) {
 int i, npos = 0;

 for (i=0; i<len; i++)
 if (a[i] >= 0)
 npos++;

 printf("%d\n", npos);
 printf("%d\n", len-npos);
}

Version 2

void pos_neg(int *a, size_t len) {
 int i, nneg = 0;

 for (i=len-1; i>=0; i--)
 if (a[i] < 0)
 nneg++;

 printf("%d\n", len - nneg);
 printf("%d\n", nneg);
}

15

95% of lighttpd revisions introduce no change*

*Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in [ICSE’13])

Measured using lighttpd regression suite on 164 revisions (~10 months)

External Behavior Evolves Sporadically

0

53

106

159

212

265

318

371

E
d

it
d

is
ta

nc
e

b
et

w
ee

n
sy

st
em

 c
al

l t
ra

ce
s

10
14

42

24
 7

273

1

16

Challenge 2: Handling Divergences

Handle divergences across versions

Accurately detect divergences

Recover from failures

Re-synchronize executions

17

Failure Recovery: Scope

Focus exclusively on crashes

For other types of divergences, we
switch to single-version execution
 v1

crash point1

v2

crash point2

18

Failure Recovery: Runtime Code Patching

v1

System call X

v2

System call Y

…
 …

clone

process

Failure Recovery Process

crash
point

copy

code

copy

code

S
yn

c+
ch

ec
kp

oi
nt

s

“runtime code patching”

s2

s1

Lighttpd 1.4.23
Lighttpd 1.4.22

1.  Revert to last successful
synchronization point

2.  Copy code from “correct”
version

3.  Run patched code to
divergence point

4.  Revert back to original code

5.  Restart multi-version execution

…
 …

GET /index.html HTTP 1.1

Host: srg.doc.ic.ac.uk

Accept-Encoding: gzip

…
 …

clone

process

Failure Recovery Process

20 20

divergence
point

copy

code

copy

code

synchronization
point

“runtime code patching”

s2

s1

V2 “crashing”
V1 “correct”

1.  Revert to last successful

synchronization point

2.  Copy code from “correct”
version

3.  Run to divergence point

4.  Revert back to original code

5.  Restart multi-version execution

Failure Recovery: Suitable Scenarios

Errors with a small propagation distance

“Localized” around a small portion of code

Applications which provide “natural” synchronization points

E.g., servers structured around a main dispatch loop

Changes which do not affect memory layout

E.g., refactorings, security patches

Where reliability is more important than performance

E.g., interactive apps, some server scenarios

21

Failure Recovery: Guarantees?

Assumes that recovery is successful if versions exhibit
the same external behavior after recovery

If unrecoverable, Mx continues in single-version mode,

using the non-crashed version

(By design, Mx does not attempt to survive errors it

cannot handle)

22

Mx Prototype

23

24

Mx Prototype

Targets multi-core processors

Support for x86 and x86-64 Linux systems

Combines binary static analysis, system call
interposition, OS-level checkpointing, and
runtime code patching

Completely transparent, runs on unmodified
binaries

Currently limited to two versions

SEA

MXM

REM

Mx

25

MxM: Multi-eXecution Monitor

Execute and monitor multi-version applications

Synchronization at the level of syscalls

System call interception (via ptrace interface)

Semantic comparison of syscall invocations (handles

ASLR, etc.)

Environment virtualization

E.g., files, sockets, pid’s

Support for multi-threaded applications

One monitor instance per pair of threads

SEA

SEA

Mx

MxM

REM

26

Runtime code patching and fault recovery

OS-level checkpointing (using clone syscall)

Code segment replacement

Runtime stack manipulation

Breakpoint insertion and handling (for indirect fun calls)

REM: Runtime Execution Manipulator

MxM

Mx

SEA

SEA
REM

27

REM: Stack Patching

…

read

0xDEADBEEF

Ret Addr:

Ret Addr:

foo

0xAAAACCCC

…

read

0xBEEFDEAD

Ret Addr:

Ret Addr:

foo

0xAAAABBBB

Version 1

 void foo() {
 ...
 write(1, buf, 3);
 ...
 }

Version 2 (patched)

 void foo() {
 ...
 write(1, buf, 3);
 ...
 }

0xDEADBEEF:
 0xBEEFDEAD:

0xDEADBEEF

0xAAAACCCC

28

REM: Indirect Calls

Version 1

 fptr = bar;
 ...

 void bar(int x) {

 ...
 }

 void foo() {

 ...
 fptr(1);
 ...
 }

0x012345678:
 0x87654321:

Version 2 (patched)

 fptr = bar;
 ...

 void bar(int x) {

 ...
 }

 void foo() {

 ...
 fptr(1);
 ...
 }

INT 3

INT 3

Memory

 0x12345678

fptr:

Memory

 0x876543210

fptr:

29

SEA: Static Binary Analyzer

Create various mappings between the two version
binaries

Static analysis of binary executables

Extracting function symbols from binaries (libbfd)

Machine code disassembling and analysis (libopcodes)

Binary call graph reconstruction and matching

MxM

Mx

REM

SEA
SEA

Evaluation

30

Survived a number of crash bugs in two popular servers

Web-server used by
several popular sites

such as YouTube,
Wikipedia, Meebo

Key-value data structure
server, used by popular

services such as
GitHub, Digg, Flickr

Evaluation: survived several crash bugs

31

Application
 Bug

md5sum

sha1sum

Buffer overflow

mkdir

mkfifo

mknod

NULL-ptr dereference

cut
 Buffer overflow

lighttpd #1
 Loop index underflow

lighttpd #2
 Off-by-one error

redis
 Missing return

IN
TE

R
A

C
TI

V
E
 A

P
P

S

S
E

R
V

E
R

S

32

robj *o = lookupKeyRead(c->db, c->argv[1]);
if (o == NULL) {
 addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
 for (i = 2; i < c->argc; i++) {
 addReply(c,shared.nullbulk);
 }
 return;
} else {
 if (o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return;
 }
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));

HMGET command hmgetCommand function
robj *o, *value;
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return; <- missing return
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
for (i = 2; i < c->argc; i++) {
 if (o != NULL && (value = hashGet(o,c-
>argv[i])) != NULL) {
 addReplyBulk(c,value);
 decrRefCount(value);
 } else {
 addReply(c,shared.nullbulk);
 }
}

Refactor

Apr 13, 2010 Oct 27, 2010

Bug diagnosed Bug introduced Bug fixed

Oct 12, 2010

Bug may result in loosing some
or even all of the stored data

33

Maximum distance between versions

Application
 Version span
 Time span

md5sum

sha1sum

1,124 revs
 1 year 7 months

mkdir

mkfifo

mknod

2,937 revs
 > 4 years

cut
 1,201 revs
 2 years 3 months

lighttpd #1
 87 revs
 2 months 2 days

lighttpd #2
 12 revs
 2 months 1 day

redis #344
 27 revs
 6 days

17.81% overhead on SPEC INT CPU 2006

34

Describes one type of applications (CPU bound)

Allows comparison with other runtime techniques

Run on 3.50 GHz Intel Xeon E3 1280

with 16 GiB of RAM, Linux kernel 3.1.9

SPEC CINT CPU2006 1.2

Utility
 Max input size
 Overhead

md5sum

sha1sum

1.25 MB

< 100ms
(imperceptible)

mkdir

mkfifo

mknod

115 nested
directories

cut
 1.10 MB

IN
TE

R
A

C
TI

V
E
 A

P
P

S

Application
 Version span
 Overhead

lighttpd

different continents

same machine

1.01x – 1.04x

2.60x – 3.49x

redis

different continents

same machine

1.00 – 1.05x

3.74 – 16.72x

Performance: Interactive and Server Apps

35

S
E

R
V

E
R

S

Measured using Coreutils 6.10

Run on 3.50 GHz Intel Xeon E3 1280 with 16 GB of RAM, Linux kernel 3.1.9

Measured using http_load and redis_benchmark (default workload)

Run on 3.50 GHz Intel Xeon E3 1280 with 16 GB of RAM, Linux kernel 3.1.9

Selected Related Work

N-version programming: A fault- tolerance approach to reliability of software operation.
Chen, L., and Avizienis, A. FTCS’78

Using replicated execution for a more secure and reliable web browser. Xue, H.,
Dautenhahn, N., and King, S. T. NDSS’12

Distinct code bases, manually-generated

Diehard: Probabilistic memory safety for unsafe languages. Berger, E, and Zorn, B. PLDI’06

N-variant systems: a secretless framework for security through diversity. Cox, B., Evans, D.,
Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong, A., and Hiser, J. USENIX
Security’06

Run-time defense against code injection attacks using replicated execution. Salamat, B.,
Jackson, T., Wagner, G., Wimmer, C., and Franz, M. IEEE TDSC ‘11

Variants of the same code, automatically-generated

Efficient online validation with delta execution. Tucek, J., Xiong, W., Zhou, Y. ASPLOS’09

Tachyon: Tandem Execution for Efficient Live Patch Testing. Maurer, M., Brumley, D. USENIX
Security’12

Online validation of manually-evolved versions

Mx: Parallel execution of manually-evolved versions, focus on surviving errors at runtime: HotSWUp’12, ICSE’13

Selected Related Work

N-version programming: A fault- tolerance approach to reliability of software operation.
Chen, L., and Avizienis, A. FTCS’78

Using replicated execution for a more secure and reliable web browser. Xue, H.,
Dautenhahn, N., and King, S. T. NDSS’12

Distinct code bases, manually-generated

Diehard: Probabilistic memory safety for unsafe languages. Berger, E, and Zorn, B. PLDI’06

N-variant systems: a secretless framework for security through diversity. Cox, B., Evans, D.,
Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong, A., and Hiser, J. USENIX
Security’06

Run-time defense against code injection attacks using replicated execution. Salamat, B.,
Jackson, T., Wagner, G., Wimmer, C., and Franz, M. IEEE TDSC ‘11

Variants of the same code, automatically-generated

Multi-version Software Updates. Cadar, C., and Hosek, P. HotSWUp’12 (position paper)

Safe Software Updates via Multi-version Execution. Hosek, P., and Cadar, C. ICSE’13

Different manually-evolved versions of the same code base

38

Mx: Safe Software Updates via MV Exec

Novel approach for improving software updates

Based on multi-version execution

Our prototype Mx can survive crash bugs in real apps

Many opportunities for future work

Better performance

Kernel modules, system call rewriting, skipping safe code, etc.

Support for more complex code changes & divergences

Automatic stack reconstruction, inference of data

structure changes, epoch-based system call

record & replay

Can multiple software versions be effectively combined to increase software reliability and security?

