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•  Software complexity 
–  Massive amounts of code 
–  Tricky control flow 
–  Complex dependencies 
–  Intensive interaction w/ environment 

•  Code has to anticipate all possible interactions 
–  Including malicious ones! 

Writing Correct Software is Hard! 
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Dynamic Symbolic Execution 

•  Dynamic symbolic execution can automatically 
explore multiple paths through a program 
•  Using a constraint solver to determine the feasibility of each 

explored path 

•  Before each dangerous operation, can check if there are 
any values that can cause an error 

•  For each path, can usually generate a concrete input 
triggering the path 
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Provides an automated way to reason about program 
behavior and the interaction with users and environment 



Dynamic Symbolic Execution 
•  Toy example 
•  Scalability challenges 

•  Path explosion, constraint solving challenges 

•  Generic bug finding 
•  User-level utilities, kernel code, drivers, computer vision code, etc. 
•  Attack generation against file systems and network servers 

•  Symbolic race detection for GPGPU code 
•  Semantic errors via crosschecking 

•  Server interoperability, SIMD optimizations, GPU optimizations 

•  Patch testing 
•  Testing six years of patches 4 



x = 1234 

x < 0 
x < 0 x ≥ 0 

return x 

x ≠ 1234 

return -x 

return -x 

x = 1234 

x = * 

x = -2 

x = 3 x = 1234 

test1.out 

test2.out test3.out 

Toy Example 

TRUE 

TRUE FALSE 

FALSE int bad_abs(int x)  
{ 
     if (x < 0) 

      return –x; 
     if (x == 1234) 
         return –x; 
     return x; 
} 

Each path is 
 explored separately! 



Implicit checks before each 
dangerous operation 

•  Pointer dereferences 
•  Array indexing 
•  Division/modulo operations 
•  Assert statements 

All-Value Checks 

0 ≤ k< 4 TRUE FALSE int foo(unsigned k) { 
   int a[4] = {3, 1, 0, 4}; 
   k = k % 4; 
   return a[a[k]]; 
} 

. . .  

{ k = * } 

. . .  

All-value checks! 
•  Errors are found if any buggy 

values exist on that path! 

TRUE FALSE 

Infeasible 

. . .  

0 ≤ k < 4 ¬ 0 ≤ k < 4 
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Implicit checks before each 
dangerous operation 

•  Pointer dereferences 
•  Array indexing 
•  Division/modulo operations 
•  Assert statements 

All-Value Checks 

0 ≤ a[k]< 4 TRUE FALSE int foo(unsigned k) { 
   int a[4] = {3, 1, 0, 4}; 
   k = k % 4; 
   return a[a[k]]; 
} 

. . .  

Buffer overflow! 

{ k = * } 

. . .  

All-value checks! 
•  Errors are found if any buggy 

values exist on that path! 

FALSE TRUE 

¬ 0 ≤  a[k] < 4  0 ≤  a[k] < 4 

. . .  k = 3 



All operations that do not depend on the symbolic 
inputs are (essentially) executed as in the original code 
 

Advantages: 
– Ability to interact with the outside environment 

•  E.g., system calls, uninstrumented libraries 
– Can partly deal with limitations of constraint solvers 

•  E.g., unsupported theories 
– Only relevant code executed symbolically 

•  Without the need to extract it explicitly 

Mixed Concrete/Symbolic Execution 
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Three tools: EGT, EXE, KLEE 

EGT/EXE/ 
K L E E 

Constraint Solver (STP) 

x = 3 

x = -2 

x = 1234 

x = 3 

C code 

x ≥ 0 
x ≠ 1234 



Scalability Challenges 

Constraint solving 
challenges 

Path exploration 
challenges 



Path Exploration Challenges 

Naïve exploration can easily get “stuck” 
 
•  Employing search heuristics 
•  Dynamically eliminating redundant paths 
•  Statically merging paths 
•  Using existing regression test suites to 

prioritize execution 
•  etc. 
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Search Heuristics 

•  Coverage-optimized search 
– Select path closest to an uncovered instruction 
– Favor paths that recently hit new code 

•  Best-first search 
•  Random path search 
•  etc. 

12 
[CCS’06, OSDI’08, ICSE’11, etc.] 



Random Path Selection 

•  NOT random state selection 
•  Favors paths high in the tree 

–  fewer constraints 

•  Avoid starvation 
–  e.g. symbolic loop 

0.5

0.25

0.1250.06250.0625

•  Maintain a binary tree of 
active paths 

•  Subtrees have equal prob. of 
being selected, irresp. of size 
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Which Search Heuristic? 

Our latest tool KLEE uses multiple heuristics in a 
round-robin fashion, to protect against individual 
heuristics getting stuck in a local maximum. 
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Eliminating Redundant Paths 

•  If two paths reach the same program point 
with the same constraint sets, we can prune 
one of them 

 

•  We can discard from the constraint sets of 
each path those constraints involving 
memory which is never read again 

15 
[TACAS’08] 



. . .  flag = 1 

flag = 0 

arg2 > 100 

flag = 1 

arg2 ≤ 100 

process(data, 1) process(data, 1) 

arg1 > 100 arg1 ≤ 100 

arg2 > 100 

arg1 > 100 

if arg1, arg2  
not read by 

process(data, 1) 

data, arg1, arg2 = * 
 
flag =  0; 
 
if (arg1 > 100)   
    flag = 1; 
 
if (arg2 > 100) 
    flag = 1; 
 
process(data, flag); 



Many Redundant Paths 
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Lots of Redundant Paths 

tcpdump 

udhcpd sb16 lance 

pcre expat bpf 
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Statically Merging Paths 

if (a > b) 
 max = a; 

else max = b; 
  

a > b 
a > b a ≤ b 

max = a 

TRUE FALSE 

max = b 

Default behaviour 

if (a > b) 
 max = a; 

else max = b; 
  

Phi-Node Folding (when no side effects) 

max = select(a>b, a, b) 

[EuroSys’11] 



Statically Merging Paths 

for (i=0; i < N; i++) { 
 if (a[i] > b[i]) 
  max[i] = a[i]; 
 else max[i] = b[i]; 

} 
  

morph computer vision algorithm: 2256  1 
 

•  Default:  2N paths 
•  Phi-node folding: 1 path 

Path merging Outsourcing problem 
to constraint solver ≡ 

(which are often optimized  
for conjunctions of  constraints) 21 



$ cd lighttpd-1.4.29 
$ make check 

... 

./cachable.t .......... ok      

./core-404-handler.t .. ok    

./core-condition.t .... ok      

./core-keepalive.t .... ok    

./core-request.t ...... ok      

./core-response.t ..... ok      

./core-var-include.t .. ok      

./core.t .............. ok      

./lowercase.t ......... ok      

./mod-access.t ........ ok    

... 

Using Existing Regression Suites 

•  Most applications come 
with a manually-written 
regression test suite 

[ICSE’11] 



Regression Suites 
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•  Execute each path 
with a single set of 
inputs 

•  Often exercise the 
general case of a 
program feature, 
missing corner cases 

CONS 
•  Designed to execute 

interesting program 
paths 

•  Often achieve good 
coverage of different 
program features 

PROS 



ZESTI: SymEx+Regression Suites 

24 

1.  Use the paths executed by the regression suite to 
bootstrap the exploration process (to benefit from 
the coverage of the manual test suite and find 
additional errors on those paths) 

2.  Incrementally explore paths around the dangerous 
operations on these paths, in increasing distance 
from the dangerous operations (to test all possible 
corner cases of the program features exercised by 
the test suite) 

[ICSE’11] 



Multipath Analysis 
main(argv, argc) 

exit(0) 

✓ 

dangerous operations 
divergence point 

✗ Bounded symbolic execution 

Bounded symbolic execution 



Scalability Challenges 

Constraint solving 
challenges 

Path exploration 
challenges 

Constraint solving 
challenges 
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Constraint Solving Challenges 

1. Accuracy: need bit-level modeling of memory: 
•  Systems code often observes the same bytes in 

different ways: e.g., using pointer casting to treat an 
array of chars as a network packet, inode, etc. 

•  Bugs in systems code are often triggered by corner 
cases related to pointer/integer casting and arithmetic 
overflows 

2. Performance: real programs generate many 
expensive constraints 
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STP Constraint Solver [Ganesh, Dill] 

•  Modern constraint solver, based on eager translation  
to SAT (uses MiniSAT) 

•  Developed at Stanford by Ganesh and Dill, initially 
targeted to (and driven by) EXE 

•  Two data types: bitvectors (BVs) and arrays of BVs  
•  We model each memory block as an array of 8-bit BVs 
•  We can translate all C expressions into STP constraints 

with bit-level accuracy 
–  Main exception: floating-point 
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Constraint Solving: Accuracy 

•  Mirror the (lack of) type system in C 
–  Model each memory block as an array of 8-bit BVs 
–  Bind types to expressions, not bits   

 char buf[N]; // symbolic 
 struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf; 
 struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf; 
 if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); }  
 
buf: ARRAY BITVECTOR(32)OF BITVECTOR(8) 

SBVLT(buf[18], 0x00)   

BVGE(buf[19]@buf[18]@buf[17]@buf[16], 0x00800000) 



Constraint Solving: Performance 

•  Inherently expensive (NP-complete) 
•  Invoked at every branch 

•  Key insight: exploit the characteristics of 
constraints generated by symex 
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Some Constraint Solving Statistics  
[after optimizations] 

UNIX utilites (and many 
other benchmarks) 

•  Large number of queries 
•  Most queries <0.1s 

•  Most time spent in the 
solver (before and after 
optimizations!) 

Application Instrs/s Queries/s Solver % 
[ 695 7.9 97.8 
base64 20,520 42.2 97.0 
chmod 5,360 12.6 97.2 
comm 222,113 305.0 88.4 
csplit 19,132 63.5 98.3 
dircolors 1,019,795 4,251.7 98.6 
echo 52 4.5 98.8 
env 13,246 26.3 97.2 
factor 12,119 22.6 99.7 
join 1,033,022 3,401.2 98.1 
ln 2,986 24.5 97.0 
mkdir 3,895 7.2 96.6 
Avg: 196,078 675.5 97.1 

1h runs using KLEE with 
DFS and no caching 

[CAV’13] 



Constraint Solving Optimizations 

Implemented at several different levels: 
•  SAT solvers 
•  SMT solvers 
•  Symbolic execution tools 
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•  Many programs generate large constraints 
involving arrays with symbolic indexes 

•  STP handles this via array-based refinement 

Reasoning about Arrays in STP 

[CCS’06] 



Reasoning about Arrays in STP 

STP’s conversion of array terms to SAT is expensive 

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6) 

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6) 
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3) 

Expands each formula by n·(n-1)/2 terms, where 
n is the number of syntactically distinct indexes 
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Array-based Refinement in STP 

STP’s conversion of array terms to SAT is expensive 

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6) 

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6) 
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3) 

Simplified formula 
UNSATISFIABLE 

Original formula 
UNSATISFIABLE 
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Array-based Refinement in STP 

i1 = 1 
i2 = 2 
i3 = 3 

v1 = e1= 1 
v2 = e2= 2 
v3 = e3= 3 

(a[1] = 1) Λ (a[2] = 2) Λ  
(a[3] = 3) Λ (1+2+3 = 6) 

STP’s conversion of array terms to SAT is expensive 

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6) 

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6) 
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3) 
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Array-based Refinement in STP 

i1 = 2 
i2 = 2 
i3 = 2 

v1 = e1= 1 
v2 = e2= 2 
v3 = e3= 3 

(a[2] = 1) Λ (a[2] = 2) Λ  
(a[2] = 3) Λ (2+2+2 = 6) 

STP’s conversion of array terms to SAT is expensive 

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6) 

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6) 
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3) 
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Array-based Refinement in STP 

i1 = 2 
i2 = 2 
i3 = 2 

v1 = e1= 1 
v2 = e2= 2 
v3 = e3= 3 

(a[2] = 1) Λ (a[2] = 2) Λ  
(a[2] = 3) Λ (2+2+2 = 6) 

STP’s conversion of array terms to SAT is expensive 

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6) 

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6) 
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3) 
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Evaluation 

Solver Total time (min) Timeouts 

STP (baseline) 56 36 

STP (array-based refinement) 10 1 

§  8495 test cases from our     
   symbolic  execution benchmarks 
§  Timeout set at 60s (which are 
added as penalty), underestimates  
performance differences 
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Higher-Level Constraint 
 Solving Optimizations 

•  Two simple and effective optimizations 
– Eliminating irrelevant constraints 
– Caching solutions 

40 



Eliminating Irrelevant Constraints 

•  In practice, each branch usually depends on a small number 
of variables 

w+z > 100 
2 * w – 1 < 12345 
x + y > 10 
z & -z = z 
x < 10 ? 

… 
… 
if (x < 10) { 
    … 
}                    

41 
[CCS’06] 



Caching Solutions 

2 * y < 100 
x > 3 
x + y > 10 

x = 5 
y = 15 

2 * y < 100 
x + y > 10 

2 * y < 100 
x > 3 
x + y > 10 
x < 10 

•  Static set of branches: lots of similar constraint sets 

Eliminating constraints 
cannot invalidate solution 

Adding constraints often  
does not invalidate solution 

x = 5 
y = 15 

x = 5 
y = 15 

42 
[OSDI’08] 
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More on Caching: Instrs/Sec 

44 

Application No caching Caching Speedup 
[ 3,914 695 0.17 
base64 18,840 20,520 1.08 
chmod 12,060 5,360 0.44 
comm 73,064 222,113 3.03 
csplit 10,682 19,132 1.79 
dircolors 8,090 1,019,795 126.05 
echo 227 52 0.22 
env 21,995 13,246 0.60 
factor 1,897 12,119 6.38 
join 12,649 1,033,022 81.66 
ln 13,420 2,986 0.22 
mkdir 25,331 3,895 0.15 
Avg: 16,847 196,078 11.63x 

•  Instrs/sec on ~1h 
runs, using DFS, 
w/ and w/o caching 

 Need for better, 
more adaptive 
caching algorithms! 

[CAV’13] 



Portfolio of SMT Solvers 

KLEE 

metaSMT 

x = 3 

x = -2 

x = 1234 

x = 3 

C code 

x ≥ 0 
x ≠ 1234 

STP Boolector Z3 
[CAV’13] 



EGT, EXE, KLEE 

Successfully used our tools to: 
•  Automatically generate high-coverage test suites 

•  Find bugs and security vulnerabilities in complex 
software 

•  Perform bounded verification 
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Bug Finding with EGT, EXE, KLEE: 
Focus on Systems and Security Critical Code 

Applications 

UNIX utilities 
ext2, ext3, JFS UNIX file systems 

Coreutils, Busybox, Minix (over 450 apps) 

Network servers 

pci, lance, sb16 

Library code libdwarf, libelf, PCRE, uClibc, Pintos 

Packet filters FreeBSD BPF, Linux BPF 

MINIX device drivers 

Bonjour, Avahi, udhcpd, lighttpd 

Kernel code HiStar kernel 

•  Most bugs fixed promptly 

OpenCV (filter, remap, resize, etc.) Computer vision code 

OpenCL code Parboil, Bullet, OP2 
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md5sum -c t1.txt 

mkdir -Z a b 

mkfifo -Z a b 

mknod -Z a b p 

seq -f %0 1 

printf %d ‘ 

pr -e t2.txt 

tac -r t3.txt t3.txt 

paste -d\\ abcdefghijklmnopqrstuvwxyz 

ptx -F\\ abcdefghijklmnopqrstuvwxyz 

ptx x t4.txt 

cut –c3-5,8000000- --output-d: file 

 

                                              

Coreutils Commands of Death 

[OSDI 2008,  ICSE 2012] 

t1.txt:    \t \tMD5( 
t2.txt:    \b\b\b\b\b\b\b\t 

t3.txt:    \n 
t4.txt:    A   



 Some modern operating systems 
allow untrusted users to mount 

regular files as disk images! 

Attack Generation: File Systems 
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Attack Generation – File Systems 

•  Mount code is executed by the kernel! 
•  Attackers may create malicious disk images to 

attack a system 
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Attack Generation – File Systems 

ext2 ext3 JFS 

 
10111001 
01011100 

= * 

EXE mount(      ) 

ext2 / ext3 / JFS 

 
01010110 
11010100 

 
01010111 
00110101 

. . .  
[Oakland 2006] 



Disk of death (JFS, Linux 2.6.10) 

Offset Hex Values 
00000 0000 0000 0000 0000 0000 0000 0000 0000 

. . . . . . 
08000 464A 3135 0000 0000 0000 0000 0000 0000 
08010 1000 0000 0000 0000 0000 0000 0000 0000 
08020 0000 0000 0100 0000 0000 0000 0000 0000 
08030 E004 000F 0000 0000 0002 0000 0000 0000 
08040 0000 0000 0000 . . .  

•  64th sector of a 64K disk image 
•  Mount it and PANIC your kernel 



Attack Generation: Network Servers 

ext2 ext3 JFS 

= * 

EXE/KLEE 

Network Server 

. . .  

  recv(       ) 

Network 

10111001 
01011100 

10111001 
01011100 

10111001 
01011100 

[CCS 2006, ICCCN 2011] 



Bonjour: Packet of Death 

Offset Hex Values 
0000 0000 0000 0000 0000 0000 0000 0000 0000 
0010 
0020 00FB 0000 14E9 002A 0000 0000 0000 0001 
0030 0000 0000 0000 055F 6461 6170 045F 7463 
0040 7005 6C6F 6361 6C00 000C 0001 

003E 0000 4000 FF11 1BB2 7F00 0001 E000 

•  Causes Bonjour to abort, potential DoS attack 
•  Confirmed by Apple, security update released 



Semantic Errors via Crosschecking 
(Equivalence Checking) 

Lots of available opportunities as code is: 
Optimized frequently          Refactored frequently 

Different implementations of the same interface 

55 

We can find any mismatches in their behavior by: 
1.  Using symbolic execution to explore multiple paths 
2.  Comparing the path constraints or input/output pairs 

across implementations   

Unoptimized version 

Optimized version 

Symbolic 
execution 

engine 
Mismatches 



Crosschecking: Advantages 

•  Can find semantic errors without the need for 
specifications! 

 
•  Constraint solving queries can be solved faster 
•  Can support constraint types not (efficiently)  

handled by the underlying solver, e.g., floating-point 
 
 Many crosschecking queries can be 

syntactically proven to be equivalent 
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1 

<< 

2 

* 

Crosschecking: Advantages 

Many crosschecking queries can be 
syntactically proven to be equivalent 
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ZeroConf Protocol 

•  Enables devices to automatically configure 
themselves and their services and be discovered 
without manual intervention 

•  Two popular implementations: Avahi (open-
source), and Bonjour (open-sourced by Apple) 

Symbolic 
execution 

engine 
Mismatches 

Bonjour 

Avahi 

[ICCCN 2011] 



Server Interoperability 
Bonjour vs. Avahi 

Offset Hex Values 
0000 0000 0000 0000 0000 0000 0000 0000 0000 
0010 
0020 00FB 0000 14E9 002A 0000 0000 0002 0001 
0030 0000 0000 0000 055F 6461 6170 045F 7463 
0040 7005 6C6F 6361 6C00 000C 0001 

003E 0000 4000 FF11 1BB2 7F00 0001 E000 

•  mDNS specification (§18.11): 
 “Multicast DNS messages received with non-zero 
Response Codes MUST be silently ignored.” 

•  Avahi ignores this packet, Bonjour does NOT 
59 



New Platforms, New Code 

•  Recent years have seen the emergence of 
new computing platforms which provide 
many opportunities for optimizations 

•  Code is often adapted manually to benefit 
from these platforms 

60 

Error-prone, as any manual process 



SIMD Optimizations 

Most processors offer support 
for SIMD instructions 
•  Can operate on multiple data 

concurrently 
•  Many algorithms can make 

use of them (e.g., computer 
vision algorithms) 

[EuroSys 2011] 



OpenCV 

Popular computer vision 
library from Intel and 
Willow Garage  

[Corner detection algorithm] 

62 

Computer vision 
algorithms were 
optimized to make 
use of SIMD 



OpenCV Results 

•  Crosschecked 51 SIMD-optimized versions 
against their reference scalar implementations 
•  Proved the bounded equivalence of 41 
•  Found mismatches in 10 

•  Most mismatches due to tricky FP-related issues: 
•  Precision 
•  Rounding  
•  Associativity  
•  Distributivity 
•  NaN values 
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OpenCV Results 

Surprising find: min/max not commutative nor associative! 

min(a,b) = a < b ? a : b 
 
a < b (ordered) à always returns false if one   
                            of the operands is NaN 
 
min(NaN, 5) = 5 
min(5, NaN) = NaN 
 
min(min(5, NaN),  100) = min(NaN, 100) = 100 
min(5, min(NaN, 100))  = min(5, 100) = 5 
 

64 



GPU Optimizations 

65 

Scalar  vs.  GPGPU code 
 

[HVC 2011] 



General Purpose GPU Computing 

(2
00
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00

8)
 



General Purpose GPUs (GPGPUs) 
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General-Purpose Graphics 
Processing Units (GPGPUs) 
are a programmable platform 
for highly parallel computation  
 
New programming model: 
•  Large number of threads 
•  Hierarchical execution and 

memory model 
 

 MEM  MEM  MEM 

 

CPU 

MEM 

PC
Ie

 



OpenCL 

•  Open Computing Language (OpenCL): an 
open standard for parallel computation  
– Targets both CPUs and GPGPUs 

•  OpenCL C language is a dialect of C99  
•  An OpenCL C program consists of one or 

more OpenCL C kernels which are executed 
on a device (such as a GPU) 

•  OpenCL C kernels may be invoked in parallel 
by the host using multiple work-items 
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OpenCL Example 

__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 
            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 
     float r1 = a[i]; 
     float r2 = i < N ? a[i+1]:0; 

     a[i] = (r0+r1+r2)/3; 
}  
 

69 

 N-1 

i = get_global_id(0) N = get_local_size(0) 

  …   …   …    i   …    1    0 

work-items 



Race Conditions 

__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 
            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 
     float r1 = a[i]; 
     float r2 = i < N ? a[i+1]:0; 

     a[i] = (r0+r1+r2)/3; 
}  
 

70 

R/W race: work-item i writes a[i],  
          work-item i+1 reads a[i] 



Barriers 

__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 
            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 
     float r1 = a[i]; 
     float r2 = i < N ? a[i+1]:0; 

     barrier(CLK_GLOBAL_MEM_FENCE); 
     a[i] = (r0+r1+r2)/3; 
}  
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  barrier() blocks until all work-items  
(in the same work-group) reached the call 



Race Checking for GPGPUs 
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__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 

            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 

     float r1 = a[i]; 

     float r2 = i < N ? a[i+1]:0; 

     a[i] = (r0+r1+r2)/3; 

} 

Wid R W 
- - - 
- - - 
- - - 
- - - 

•  Wid: Work-item that accessed byte   
•  R: whether byte was read 
•  W: whether byte was written 

MAR(a[0]): work item 0 

0            X           - 
0            X           - 

0            X           X 



Race Checking for GPGPUs 
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__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 

            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 

     float r1 = a[i]; 

     float r2 = i < N ? a[i+1]:0; 

     a[i] = (r0+r1+r2)/3; 

} 

Wid R W 

•  Wid: Work-item that accessed byte   
•  R: whether byte was read 
•  W: whether byte was written 

MAR(a[0]): work item 1 

0           X          X 

0           X          X 

0           X          X 

0           X          X       R/W 



Race Checking for GPGPUs 
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__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 

            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 

     float r1 = a[i]; 

     float r2 = i < N ? a[i+1]:0; 

     barrier(CLK_GLOBAL_MEM_FENCE); 

     a[i] = (r0+r1+r2)/3; 

} 

Wid R W 
- - - 
- - - 
- - - 
- - - 
0 X - 
0 X - 

We model barrier() by resetting the MAR before continuing 
execution any of the work-items past the barrier 

MAR(a[0]): work item 0 



Race Checking for GPGPUs 
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Wid R W 
0 X - 
0 X - 
0 X - 
0 X - 
0 X - 
0 X - 

We model barrier() by resetting the MAR before continuing 
execution any of the work-items past the barrier 

MAR(a[0]): work item 1 

__kernel void arr_sqrt(global float ∗a) {  
     size_t i = get_global_id(0), 

            N = get_local_size(0); 

     float r0 = i > 0 ? a[i-1]:0; 

     float r1 = a[i]; 

     float r2 = i < N ? a[i+1]:0; 

     barrier(CLK_GLOBAL_MEM_FENCE); 

     a[i] = (r0+r1+r2)/3; 

} 



Symbolic Races 

Work-item i 
 
a[i] = ...  
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Work-item j 
 
a[j] = ...  

Write-after-write race 
if i=j satisfiable 



GPGPU (OpenCL) Optimizations 

•  Parboil:  
–  GPU benchmark suite, originally 

written in CUDA 
•  OP2  

–  Library for applications on 
unstructured grids 

•  Bullet open-source physics library 
–  Popular library used movie studios 

and professional game developers 
–  Analyzed soft body engine 
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Bullet library  



OpenCL Benchmarks:  
Bugs and Mismatches 

Several bugs and mismatches: 
•  2 mismatches between C and OpenCL code 

•  Incorrect FP associativity and distributivity assumptions (CP in Parboil) 

•  3 memory errors  
•  Buffer overflows (MRI-Q&MRI-FHD  in Parboil) 
•  Use-after-free: incorrect synchronization between host and kernel code 

(MRI-Q in Parboil) 
•  Uninitialized memory (MRI-FHD in Parboil) 

•  1 race condition 
•  Missing synchronization barrier (OP2) 

•  1 compiler bug 
•  NVidia compiler bug (incorrect optimization) 
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Integrating Crosschecking into 
Development Process 

Semantic mismatches not always errors  
–  Underspecified behavior 

Two (anecdotal) insights: 
1.  Provide developers the ability to add “assumptions” eg: 

–  Floating-point associativity holds: 
•  A+(B+C) = (A+B)+C 

–  Disregard the difference between 0- and 0+: 
•  A+0 = A 

2.  All things being equal, developers prefer to keep the 
behavior of the reference implementation 
–  Particularly if we can provide some guarantees  

•  bounded equivalence 
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• 1 test4 

KATCH: High-Coverage  
Symbolic Patch Testing 

commit 

KATCH 

test1 test4 

--- klee/trunk/lib/Core/Executor.cpp  2009/08/01 22:31:44 77819 

+++ klee/trunk/lib/Core/Executor.cpp  2009/08/02 23:09:31 77922 

@@ -2422,8 +2424,11 @@ 

       info << "none\n"; 

     } else { 

       const MemoryObject *mo = lower->first; 

+      std::string alloc_info; 

+      mo->getAllocInfo(alloc_info); 

       info << "object at " << mo->address  

-           << " of size " << mo->size << "\n"; 

+           << " of size " << mo->size << "\n" 

+           << "\t\t" << alloc_info << "\n“; 

test3 
test4 

test4 

bug 

test4 

test4 

test4 

test4 test4 test4 test4 test4 

test4 

test4 test4 

test4 test4 

bug bug 

test4 



                  Symbolic Patch Testing Input	



Patch 
+  if (errno == ECHILD) 
+ { log_error_write(srv, 
__FILE__, __LINE__, "s", 
”..."); 

+  cgi_pid_del(srv, p, 
p->cgi_pid.ptr[ndx]); 

 

Program 

1. Select the regression 
input closest to the patch 
(or partially covering it) 

• 1 test4 test1 test4 

test3 
test4 

test4 

bug 

test4 

test4 

test4 

test4 test4 test4 test4 test4 

test4 

test4 test4 

test4 test4 

bug bug 

test4 

KATCH 



                  Symbolic Patch Testing 

Program 

Input	



Patch 

2. Greedily drive 
exploration toward 
uncovered statements in 
the patch 

• 1 test4 test1 test4 

test3 
test4 

test4 

bug 

test4 

test4 

test4 

test4 test4 test4 test4 test4 

test4 

test4 test4 

test4 test4 

bug bug 

test4 

KATCH 



                  Symbolic Patch Testing Input	



3. If stuck, identify the 
constraints that disallow 
execution to reach the 
patch, and backtrack 

• 1 test4 test1 test4 

test3 
test4 

test4 

bug 

test4 

test4 

test4 

test4 test4 test4 test4 test4 

test4 

test4 test4 

test4 test4 

bug bug 

test4 

KATCH 

Program 

Patch 
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void log(char input) {  
     int file = open(”access.log”…);     
     if (input >= ’␣’ && input <= ’~’) {  
         // printable characters  
         write(file, &input, 1);  
  +  } else {   
  +      char escinput = escape(input);  
  +      write(file, &escinput, 1);  
  +  }  
     close(file);  
}  

lighttpd r2660: patch 
modifies log() to escape 
sensitive characters 

Greedy Exploration Step 
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void log(char input) {  
     int file = open(”access.log”…);     
     if (input >= ’␣’ && input <= ’~’) {  
         // printable characters  
         write(file, &input, 1);  
  +  } else {   
  +      char escinput = escape(input);  
  +      write(file, &escinput, 1);  
  +  }  
     close(file);  
}  

Available input: “t” 
(or any printable char) 

1.  Greedy step: choose 
the symbolic branch 
point whose 
unexplored side is 
closest to the patch. 

2.  Explore this side! 
 

Greedy Exploration Step 



86 

void log(char input) {  
    if (input >= ’␣’ && input <= ’~’) {  
        . . . 
    } else { 
+  . . . 
    } 
} 
 
if (0 == strcmp(request, “GET”) 
    . . .  
for (char* p = request; *p; p++) 
    log(*p); 

Available input: “GET” 

1.  Backtrack to the last 
symbolic branch 
that disallows this 
side to be executed 

2.  Explore the other 
side of that branch 

 

Informed Path Regeneration 

Greedy step fails! 

req[2] ≠ ‘T’ 



enum escape_t escape; 
void log(char input) {         
    if (escape == ESCAPE_ALL) {  
+       . . .  
 } 
 
opt = getopt_long(argc, argv, ...); 
switch (opt) { 
    case ‘a’: escape = ESCAPE_SPACE; 
                 break; 
    case ‘b’: escape = ESCAPE_ALL; 
. . . 
log(…); 

Available test: opt = ‘a’ 

1.  Find all reaching 
definitions for the 
variables involved and try 
to cover another one. 

2.  Favors  definitions that 
can be statically shown to 
satisfy target, or 
unexecuted definitions 

Definition Switching 

Backtracking step fails! 

Patch guarded by 
concrete branch 



Input Selection 
Naïve solution: calculate the 
context-sensitive static distance 
between the path executed by an 
input and the patch code 

if (x < 100) 
    f(x); 
else 
    if (x > 200) 
        f(x+1); 
 
void f(int x) { 
   if (x % 2 == 0) 
       PATCH; 
   . . .  

x < 100 

x%2 == 0 x > 200 

x%2 == 0 

x < 100 

x%2 == 0 x > 200 

x%2 == 0 

x = 55 

x = 155 

 1 

 2 



Input Selection 
Naïve solution: calculate the 
context-sensitive static distance 
between the path executed by an 
input and the patch code 

if (x < 100) 
    f(x); 
else 
    if (x > 200) 
        f(x+1); 
 
void f(int x) { 
   if (x == 999) 
       PATCH; 
   . . .  

x < 100 

x == 999 x > 200 

x == 999 

x < 100 

x == 999 x > 200 

x == 999 

x = 55  1 

x = 155  2 



Input Selection: Weakest Preconditions 
For which basic block in the 
program, compute a necessary 
condition for reaching the target. 
Prune CFG edges which make 
the target unreachable. 

if (x < 100) 
    f(x); 
else 
    if (x > 200) 
        f(x+1); 
 
void f(int x) { 
   if (x == 999) 
       PATCH; 
   . . .  

x < 100 

x == 999 x > 200 

x == 999 

x = 55  3 

x < 100 

x == 999 x > 200 

x == 999 

x = 155  2 



Example: Lighttpd r2631 
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Powers several popular sites such as YouTube and Wikipedia 

[SPIN 2012] 

Revision ELOC Covered ELOC 
Regression            KATCH 

2631 20 15 (75%) 20 (100%) 

https://zz.example.com/ http://zzz.example.com/ KATCH 



Lighttpd r2660 
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Revision ELOC Covered ELOC 
Regression            KATCH 

2660 33 9 (27%) 24 (72%) 

165 if (str−>ptr[i] >= ’␣’ && str−>ptr[i] <= ’~’) {  
166    /* printable chars */  
167    buffer_append_string_len(dest,&str −>ptr[i],1);  
168 } else switch (str−>ptr[i]) {  
169 case ’"’:  
170    BUFFER_APPEND_STRING_CONST(dest, "\\\"");  
171    break;  

Bug reported and fixed promptly by developers 



Extended Evaluation (WiP) 
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Key evaluation criteria: no cherry picking! 
•  choose all patches for an application over a 

contiguous time period 

FindUtils suite (FU) 
find, xargs, locate 

12,648 ELOC 125 patches written 
over ~26 months  

DiffUtils suite (DU) 
s/diff, diff3, cmp 

55,655 ELOC 
+ 280,000 in libs 

175 patches written 
over ~30 months  

BinUtils suite (BU) 
ar, elfedit, nm, etc. 

81,933 ELOC 
+ 800,000 in libs 

181 patches written 
over ~16 months 



Patch Coverage (basic block level) 

TEST Uncovered 

100% 63% 0% 

FU: 

TEST 

100% 0% 

BU: Uncovered 

18% 

Standard symbolic execution (30min/BB) only added +1.2% to FU 

TEST  Uncovered 

100% 35% 0% 
DU: 



Patch Coverage  
(current results – ongoing work) 

TEST + KATCH Un 

87% 100% 63% 0% 

FU: 10min/BB 

Standard symbolic execution (30min/BB) only added +1.2% to FU 

TEST + KATCH  Uncovered 

73% 100% 35% 0% 
DU: 10min/BB 

TEST 

100% 27% 0% 

BU: K Uncovered 

18% 

15min/BB 



Binutils: Coverage+Bugs  
(current results) 
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•  Found 14 distinct crash bugs, all in BU 
•  All unreachable by standard symbolic execution 

•  12 bugs still present in latest version 
•  Reported (some already fixed) by developers 

•  10 bugs found in the patch code itself or in code 
affected by patch code 

TEST 

100% 27% 0% 

BU: K Uncovered 

18% 

15min/BB 



KLEE – Demo 
h"p://klee.llvm.org	
  

•  bad_abs 
•  xcheck_abs 
•  squares 



•  Automatically reasons about program behavior 
and the interaction with users and environment 

•  Can generate inputs exposing both generic and 
semantic bugs in complex software 
•  Including file systems, library code, utility applications, 

network servers, device drivers, computer vision code 

Dynamic Symbolic Execution  
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KLEE: Freely Available as Open-Source 
h"p://klee.llvm.org	
  

•  Over 250 subscribers to the klee-dev mailing list 
•  Extended in many interesting ways by several 

research groups, in the areas of: 
•  wireless sensor networks/distributed systems 
•  schedule memoization in multithreaded code 
•  automated debugging 
•  exploit generation 
•  client-behavior verification in online gaming 
•  GPU testing and verification 
•  etc. 


