
Improving Software Reliability
and Security via Symbolic Execution

Cristian Cadar
Department of Computing
Imperial College London

UPMARC Summer School
Upsalla, 10-11 June 2013

Joint work with Paul Marinescu, Peter Collingbourne, Paul Kelly,
JaeSeung Song, Peter Pietzuch, Hristina Palikareva (Imperial)

Dawson Engler, Daniel Dunbar, Junfeng Yang, Peter Pawlowski, Can Sar,

Paul Twohey, Vijay Ganesh, David Dill, Peter Boonstoppel (Stanford)

•  Software complexity
–  Massive amounts of code
–  Tricky control flow
–  Complex dependencies
–  Intensive interaction w/ environment

•  Code has to anticipate all possible interactions
–  Including malicious ones!

Writing Correct Software is Hard!

2

Dynamic Symbolic Execution

•  Dynamic symbolic execution can automatically
explore multiple paths through a program
•  Using a constraint solver to determine the feasibility of each

explored path

•  Before each dangerous operation, can check if there are
any values that can cause an error

•  For each path, can usually generate a concrete input
triggering the path

3

Provides an automated way to reason about program
behavior and the interaction with users and environment

Dynamic Symbolic Execution
•  Toy example
•  Scalability challenges

•  Path explosion, constraint solving challenges

•  Generic bug finding
•  User-level utilities, kernel code, drivers, computer vision code, etc.
•  Attack generation against file systems and network servers

•  Symbolic race detection for GPGPU code
•  Semantic errors via crosschecking

•  Server interoperability, SIMD optimizations, GPU optimizations

•  Patch testing
•  Testing six years of patches 4

x = 1234

x < 0
x < 0 x ≥ 0

return x

x ≠ 1234

return -x

return -x

x = 1234

x = *

x = -2

x = 3 x = 1234

test1.out

test2.out test3.out

Toy Example

TRUE

TRUE FALSE

FALSE int bad_abs(int x)
{
 if (x < 0)

 return –x;
 if (x == 1234)
 return –x;
 return x;
}

Each path is
 explored separately!

Implicit checks before each
dangerous operation

•  Pointer dereferences
•  Array indexing
•  Division/modulo operations
•  Assert statements

All-Value Checks

0 ≤ k< 4 TRUE FALSE int foo(unsigned k) {
 int a[4] = {3, 1, 0, 4};
 k = k % 4;
 return a[a[k]];
}

. . .

{ k = * }

. . .

All-value checks!
•  Errors are found if any buggy

values exist on that path!

TRUE FALSE

Infeasible

. . .

0 ≤ k < 4 ¬ 0 ≤ k < 4

6

Implicit checks before each
dangerous operation

•  Pointer dereferences
•  Array indexing
•  Division/modulo operations
•  Assert statements

All-Value Checks

0 ≤ a[k]< 4 TRUE FALSE int foo(unsigned k) {
 int a[4] = {3, 1, 0, 4};
 k = k % 4;
 return a[a[k]];
}

. . .

Buffer overflow!

{ k = * }

. . .

All-value checks!
•  Errors are found if any buggy

values exist on that path!

FALSE TRUE

¬ 0 ≤ a[k] < 4 0 ≤ a[k] < 4

. . . k = 3

All operations that do not depend on the symbolic
inputs are (essentially) executed as in the original code

Advantages:
– Ability to interact with the outside environment

•  E.g., system calls, uninstrumented libraries
– Can partly deal with limitations of constraint solvers

•  E.g., unsupported theories
– Only relevant code executed symbolically

•  Without the need to extract it explicitly

Mixed Concrete/Symbolic Execution

8

Three tools: EGT, EXE, KLEE

EGT/EXE/
K L E E

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

C code

x ≥ 0
x ≠ 1234

Scalability Challenges

Constraint solving
challenges

Path exploration
challenges

Path Exploration Challenges

Naïve exploration can easily get “stuck”

•  Employing search heuristics
•  Dynamically eliminating redundant paths
•  Statically merging paths
•  Using existing regression test suites to

prioritize execution
•  etc.

11

Search Heuristics

•  Coverage-optimized search
– Select path closest to an uncovered instruction
– Favor paths that recently hit new code

•  Best-first search
•  Random path search
•  etc.

12
[CCS’06, OSDI’08, ICSE’11, etc.]

Random Path Selection

•  NOT random state selection
•  Favors paths high in the tree

–  fewer constraints

•  Avoid starvation
–  e.g. symbolic loop

0.5

0.25

0.1250.06250.0625

•  Maintain a binary tree of
active paths

•  Subtrees have equal prob. of
being selected, irresp. of size

13

Which Search Heuristic?

Our latest tool KLEE uses multiple heuristics in a
round-robin fashion, to protect against individual
heuristics getting stuck in a local maximum.

14

Eliminating Redundant Paths

•  If two paths reach the same program point
with the same constraint sets, we can prune
one of them

•  We can discard from the constraint sets of
each path those constraints involving
memory which is never read again

15
[TACAS’08]

. . . flag = 1

flag = 0

arg2 > 100

flag = 1

arg2 ≤ 100

process(data, 1) process(data, 1)

arg1 > 100 arg1 ≤ 100

arg2 > 100

arg1 > 100

if arg1, arg2
not read by

process(data, 1)

data, arg1, arg2 = *

flag = 0;

if (arg1 > 100)
 flag = 1;

if (arg2 > 100)
 flag = 1;

process(data, flag);

Many Redundant Paths

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

 Base
 Redundant path elimination

PCI driver (MINIX) – 1h runs

N
on

-r
ed

un
da

nt
 e

xp
lo

re
d

st
at

es

Generated tests 17

Lots of Redundant Paths

tcpdump

udhcpd sb16 lance

pcre expat bpf

18

0%

10%

20%

30%

40%

50%

60%

70%

0 2000 4000 6000 8000

 Base
 Redundant path elimination

Redundant Path Elimination

PCI driver (MINIX) – 1h runs

Generated tests

Br
an

ch
 c

ov
er

ag
e

(%
)

19

Statically Merging Paths

if (a > b)
 max = a;

else max = b;

a > b
a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
 max = a;

else max = b;

Phi-Node Folding (when no side effects)

max = select(a>b, a, b)

[EuroSys’11]

Statically Merging Paths

for (i=0; i < N; i++) {
 if (a[i] > b[i])
 max[i] = a[i];
 else max[i] = b[i];

}

morph computer vision algorithm: 2256  1

•  Default: 2N paths
•  Phi-node folding: 1 path

Path merging Outsourcing problem
to constraint solver ≡

(which are often optimized
for conjunctions of constraints) 21

$ cd lighttpd-1.4.29
$ make check

...

./cachable.t ok

./core-404-handler.t .. ok

./core-condition.t ok

./core-keepalive.t ok

./core-request.t ok

./core-response.t ok

./core-var-include.t .. ok

./core.t ok

./lowercase.t ok

./mod-access.t ok

...

Using Existing Regression Suites

•  Most applications come
with a manually-written
regression test suite

[ICSE’11]

Regression Suites

23

•  Execute each path
with a single set of
inputs

•  Often exercise the
general case of a
program feature,
missing corner cases

CONS
•  Designed to execute

interesting program
paths

•  Often achieve good
coverage of different
program features

PROS

ZESTI: SymEx+Regression Suites

24

1.  Use the paths executed by the regression suite to
bootstrap the exploration process (to benefit from
the coverage of the manual test suite and find
additional errors on those paths)

2.  Incrementally explore paths around the dangerous
operations on these paths, in increasing distance
from the dangerous operations (to test all possible
corner cases of the program features exercised by
the test suite)

[ICSE’11]

Multipath Analysis
main(argv, argc)

exit(0)

✓

dangerous operations
divergence point

✗ Bounded symbolic execution

Bounded symbolic execution

Scalability Challenges

Constraint solving
challenges

Path exploration
challenges

Constraint solving
challenges

26

Constraint Solving Challenges

1. Accuracy: need bit-level modeling of memory:
•  Systems code often observes the same bytes in

different ways: e.g., using pointer casting to treat an
array of chars as a network packet, inode, etc.

•  Bugs in systems code are often triggered by corner
cases related to pointer/integer casting and arithmetic
overflows

2. Performance: real programs generate many
expensive constraints

27

STP Constraint Solver [Ganesh, Dill]

•  Modern constraint solver, based on eager translation
to SAT (uses MiniSAT)

•  Developed at Stanford by Ganesh and Dill, initially
targeted to (and driven by) EXE

•  Two data types: bitvectors (BVs) and arrays of BVs
•  We model each memory block as an array of 8-bit BVs
•  We can translate all C expressions into STP constraints

with bit-level accuracy
–  Main exception: floating-point

28

Constraint Solving: Accuracy

•  Mirror the (lack of) type system in C
–  Model each memory block as an array of 8-bit BVs
–  Bind types to expressions, not bits

 char buf[N]; // symbolic
 struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf;
 struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf;
 if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); }

buf: ARRAY BITVECTOR(32)OF BITVECTOR(8)

SBVLT(buf[18], 0x00)

BVGE(buf[19]@buf[18]@buf[17]@buf[16], 0x00800000)

Constraint Solving: Performance

•  Inherently expensive (NP-complete)
•  Invoked at every branch

•  Key insight: exploit the characteristics of
constraints generated by symex

30

Some Constraint Solving Statistics
[after optimizations]

UNIX utilites (and many
other benchmarks)

•  Large number of queries
•  Most queries <0.1s

•  Most time spent in the
solver (before and after
optimizations!)

Application Instrs/s Queries/s Solver %
[695 7.9 97.8
base64 20,520 42.2 97.0
chmod 5,360 12.6 97.2
comm 222,113 305.0 88.4
csplit 19,132 63.5 98.3
dircolors 1,019,795 4,251.7 98.6
echo 52 4.5 98.8
env 13,246 26.3 97.2
factor 12,119 22.6 99.7
join 1,033,022 3,401.2 98.1
ln 2,986 24.5 97.0
mkdir 3,895 7.2 96.6
Avg: 196,078 675.5 97.1

1h runs using KLEE with
DFS and no caching

[CAV’13]

Constraint Solving Optimizations

Implemented at several different levels:
•  SAT solvers
•  SMT solvers
•  Symbolic execution tools

32

•  Many programs generate large constraints
involving arrays with symbolic indexes

•  STP handles this via array-based refinement

Reasoning about Arrays in STP

[CCS’06]

Reasoning about Arrays in STP

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Expands each formula by n·(n-1)/2 terms, where
n is the number of syntactically distinct indexes

34

Array-based Refinement in STP

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

Simplified formula
UNSATISFIABLE

Original formula
UNSATISFIABLE

35

Array-based Refinement in STP

i1 = 1
i2 = 2
i3 = 3

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[1] = 1) Λ (a[2] = 2) Λ
(a[3] = 3) Λ (1+2+3 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

36

Array-based Refinement in STP

i1 = 2
i2 = 2
i3 = 2

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ
(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

37

Array-based Refinement in STP

i1 = 2
i2 = 2
i3 = 2

v1 = e1= 1
v2 = e2= 2
v3 = e3= 3

(a[2] = 1) Λ (a[2] = 2) Λ
(a[2] = 3) Λ (2+2+2 = 6)

STP’s conversion of array terms to SAT is expensive

(a[i1] = e1) Λ (a[i2] = e2) Λ (a[i3] = e3) Λ (i1+i2+i3=6)

(v1 = e1) Λ (v2 = e2) Λ (v3 = e3) Λ (i1+i2+i3=6)
(i1 = i2 ═> v1 = v2) Λ (i1 = i3 ═> v1 = v3) Λ (i2 = i3 ═> v2 = v3)

38

Evaluation

Solver Total time (min) Timeouts

STP (baseline) 56 36

STP (array-based refinement) 10 1

§  8495 test cases from our
 symbolic execution benchmarks
§  Timeout set at 60s (which are
added as penalty), underestimates
performance differences

39

Higher-Level Constraint
 Solving Optimizations

•  Two simple and effective optimizations
– Eliminating irrelevant constraints
– Caching solutions

40

Eliminating Irrelevant Constraints

•  In practice, each branch usually depends on a small number
of variables

w+z > 100
2 * w – 1 < 12345
x + y > 10
z & -z = z
x < 10 ?

…
…
if (x < 10) {
 …
}

41
[CCS’06]

Caching Solutions

2 * y < 100
x > 3
x + y > 10

x = 5
y = 15

2 * y < 100
x + y > 10

2 * y < 100
x > 3
x + y > 10
x < 10

•  Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5
y = 15

x = 5
y = 15

42
[OSDI’08]

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

 Base
 Irrelevant Constraint Elimination
 Caching
 Irrelevant Constraint Elimination + Caching

Speedup

Aggregated data over 73 applications

Ti
m

e
(s

)

Executed instructions (normalized) 43

More on Caching: Instrs/Sec

44

Application No caching Caching Speedup
[3,914 695 0.17
base64 18,840 20,520 1.08
chmod 12,060 5,360 0.44
comm 73,064 222,113 3.03
csplit 10,682 19,132 1.79
dircolors 8,090 1,019,795 126.05
echo 227 52 0.22
env 21,995 13,246 0.60
factor 1,897 12,119 6.38
join 12,649 1,033,022 81.66
ln 13,420 2,986 0.22
mkdir 25,331 3,895 0.15
Avg: 16,847 196,078 11.63x

•  Instrs/sec on ~1h
runs, using DFS,
w/ and w/o caching

 Need for better,
more adaptive
caching algorithms!

[CAV’13]

Portfolio of SMT Solvers

KLEE

metaSMT

x = 3

x = -2

x = 1234

x = 3

C code

x ≥ 0
x ≠ 1234

STP Boolector Z3
[CAV’13]

EGT, EXE, KLEE

Successfully used our tools to:
•  Automatically generate high-coverage test suites

•  Find bugs and security vulnerabilities in complex
software

•  Perform bounded verification

46

Bug Finding with EGT, EXE, KLEE:
Focus on Systems and Security Critical Code

Applications

UNIX utilities
ext2, ext3, JFS UNIX file systems

Coreutils, Busybox, Minix (over 450 apps)

Network servers

pci, lance, sb16

Library code libdwarf, libelf, PCRE, uClibc, Pintos

Packet filters FreeBSD BPF, Linux BPF

MINIX device drivers

Bonjour, Avahi, udhcpd, lighttpd

Kernel code HiStar kernel

•  Most bugs fixed promptly

OpenCV (filter, remap, resize, etc.) Computer vision code

OpenCL code Parboil, Bullet, OP2

47

md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

printf %d ‘

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

cut –c3-5,8000000- --output-d: file

Coreutils Commands of Death

[OSDI 2008, ICSE 2012]

t1.txt: \t \tMD5(
t2.txt: \b\b\b\b\b\b\b\t

t3.txt: \n
t4.txt: A

 Some modern operating systems
allow untrusted users to mount

regular files as disk images!

Attack Generation: File Systems

49

Attack Generation – File Systems

•  Mount code is executed by the kernel!
•  Attackers may create malicious disk images to

attack a system

50

Attack Generation – File Systems

ext2 ext3 JFS

10111001
01011100

= *

EXE mount()

ext2 / ext3 / JFS

01010110
11010100

01010111
00110101

. . .
[Oakland 2006]

Disk of death (JFS, Linux 2.6.10)

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

.
08000 464A 3135 0000 0000 0000 0000 0000 0000
08010 1000 0000 0000 0000 0000 0000 0000 0000
08020 0000 0000 0100 0000 0000 0000 0000 0000
08030 E004 000F 0000 0000 0002 0000 0000 0000
08040 0000 0000 0000 . . .

•  64th sector of a 64K disk image
•  Mount it and PANIC your kernel

Attack Generation: Network Servers

ext2 ext3 JFS

= *

EXE/KLEE

Network Server

. . .

 recv()

Network

10111001
01011100

10111001
01011100

10111001
01011100

[CCS 2006, ICCCN 2011]

Bonjour: Packet of Death

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0000 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

•  Causes Bonjour to abort, potential DoS attack
•  Confirmed by Apple, security update released

Semantic Errors via Crosschecking
(Equivalence Checking)

Lots of available opportunities as code is:
Optimized frequently Refactored frequently

Different implementations of the same interface

55

We can find any mismatches in their behavior by:
1.  Using symbolic execution to explore multiple paths
2.  Comparing the path constraints or input/output pairs

across implementations

Unoptimized version

Optimized version

Symbolic
execution

engine
Mismatches

Crosschecking: Advantages

•  Can find semantic errors without the need for
specifications!

•  Constraint solving queries can be solved faster
•  Can support constraint types not (efficiently)

handled by the underlying solver, e.g., floating-point

 Many crosschecking queries can be

syntactically proven to be equivalent

56

1

<<

2

*

Crosschecking: Advantages

Many crosschecking queries can be
syntactically proven to be equivalent

57

ZeroConf Protocol

•  Enables devices to automatically configure
themselves and their services and be discovered
without manual intervention

•  Two popular implementations: Avahi (open-
source), and Bonjour (open-sourced by Apple)

Symbolic
execution

engine
Mismatches

Bonjour

Avahi

[ICCCN 2011]

Server Interoperability
Bonjour vs. Avahi

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0002 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

•  mDNS specification (§18.11):
 “Multicast DNS messages received with non-zero
Response Codes MUST be silently ignored.”

•  Avahi ignores this packet, Bonjour does NOT
59

New Platforms, New Code

•  Recent years have seen the emergence of
new computing platforms which provide
many opportunities for optimizations

•  Code is often adapted manually to benefit
from these platforms

60

Error-prone, as any manual process

SIMD Optimizations

Most processors offer support
for SIMD instructions
•  Can operate on multiple data

concurrently
•  Many algorithms can make

use of them (e.g., computer
vision algorithms)

[EuroSys 2011]

OpenCV

Popular computer vision
library from Intel and
Willow Garage

[Corner detection algorithm]

62

Computer vision
algorithms were
optimized to make
use of SIMD

OpenCV Results

•  Crosschecked 51 SIMD-optimized versions
against their reference scalar implementations
•  Proved the bounded equivalence of 41
•  Found mismatches in 10

•  Most mismatches due to tricky FP-related issues:
•  Precision
•  Rounding
•  Associativity
•  Distributivity
•  NaN values

63

OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) à always returns false if one
 of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

64

GPU Optimizations

65

Scalar vs. GPGPU code

[HVC 2011]

General Purpose GPU Computing

(2
00

6)

(2
00

8)

General Purpose GPUs (GPGPUs)

67

General-Purpose Graphics
Processing Units (GPGPUs)
are a programmable platform
for highly parallel computation

New programming model:
•  Large number of threads
•  Hierarchical execution and

memory model

 MEM MEM MEM

CPU

MEM

PC
Ie

OpenCL

•  Open Computing Language (OpenCL): an
open standard for parallel computation
– Targets both CPUs and GPGPUs

•  OpenCL C language is a dialect of C99
•  An OpenCL C program consists of one or

more OpenCL C kernels which are executed
on a device (such as a GPU)

•  OpenCL C kernels may be invoked in parallel
by the host using multiple work-items

68

OpenCL Example

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),
 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;
 float r1 = a[i];
 float r2 = i < N ? a[i+1]:0;

 a[i] = (r0+r1+r2)/3;
}

69

 N-1

i = get_global_id(0) N = get_local_size(0)

 … … … i … 1 0

work-items

Race Conditions

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),
 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;
 float r1 = a[i];
 float r2 = i < N ? a[i+1]:0;

 a[i] = (r0+r1+r2)/3;
}

70

R/W race: work-item i writes a[i],
 work-item i+1 reads a[i]

Barriers

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),
 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;
 float r1 = a[i];
 float r2 = i < N ? a[i+1]:0;

 barrier(CLK_GLOBAL_MEM_FENCE);
 a[i] = (r0+r1+r2)/3;
}

71

 barrier() blocks until all work-items
(in the same work-group) reached the call

Race Checking for GPGPUs

72

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),

 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;

 float r1 = a[i];

 float r2 = i < N ? a[i+1]:0;

 a[i] = (r0+r1+r2)/3;

}

Wid R W
- - -
- - -
- - -
- - -

•  Wid: Work-item that accessed byte
•  R: whether byte was read
•  W: whether byte was written

MAR(a[0]): work item 0

0 X -
0 X -

0 X X

Race Checking for GPGPUs

73

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),

 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;

 float r1 = a[i];

 float r2 = i < N ? a[i+1]:0;

 a[i] = (r0+r1+r2)/3;

}

Wid R W

•  Wid: Work-item that accessed byte
•  R: whether byte was read
•  W: whether byte was written

MAR(a[0]): work item 1

0 X X

0 X X

0 X X

0 X X R/W

Race Checking for GPGPUs

74

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),

 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;

 float r1 = a[i];

 float r2 = i < N ? a[i+1]:0;

 barrier(CLK_GLOBAL_MEM_FENCE);

 a[i] = (r0+r1+r2)/3;

}

Wid R W
- - -
- - -
- - -
- - -
0 X -
0 X -

We model barrier() by resetting the MAR before continuing
execution any of the work-items past the barrier

MAR(a[0]): work item 0

Race Checking for GPGPUs

75

Wid R W
0 X -
0 X -
0 X -
0 X -
0 X -
0 X -

We model barrier() by resetting the MAR before continuing
execution any of the work-items past the barrier

MAR(a[0]): work item 1

__kernel void arr_sqrt(global float ∗a) {
 size_t i = get_global_id(0),

 N = get_local_size(0);

 float r0 = i > 0 ? a[i-1]:0;

 float r1 = a[i];

 float r2 = i < N ? a[i+1]:0;

 barrier(CLK_GLOBAL_MEM_FENCE);

 a[i] = (r0+r1+r2)/3;

}

Symbolic Races

Work-item i

a[i] = ...

76

Work-item j

a[j] = ...

Write-after-write race
if i=j satisfiable

GPGPU (OpenCL) Optimizations

•  Parboil:
–  GPU benchmark suite, originally

written in CUDA
•  OP2

–  Library for applications on
unstructured grids

•  Bullet open-source physics library
–  Popular library used movie studios

and professional game developers
–  Analyzed soft body engine

77

Bullet library

OpenCL Benchmarks:
Bugs and Mismatches

Several bugs and mismatches:
•  2 mismatches between C and OpenCL code

•  Incorrect FP associativity and distributivity assumptions (CP in Parboil)

•  3 memory errors
•  Buffer overflows (MRI-Q&MRI-FHD in Parboil)
•  Use-after-free: incorrect synchronization between host and kernel code

(MRI-Q in Parboil)
•  Uninitialized memory (MRI-FHD in Parboil)

•  1 race condition
•  Missing synchronization barrier (OP2)

•  1 compiler bug
•  NVidia compiler bug (incorrect optimization)

 78

Integrating Crosschecking into
Development Process

Semantic mismatches not always errors
–  Underspecified behavior

Two (anecdotal) insights:
1.  Provide developers the ability to add “assumptions” eg:

–  Floating-point associativity holds:
•  A+(B+C) = (A+B)+C

–  Disregard the difference between 0- and 0+:
•  A+0 = A

2.  All things being equal, developers prefer to keep the
behavior of the reference implementation
–  Particularly if we can provide some guarantees

•  bounded equivalence

79

• 1 test4

KATCH: High-Coverage
Symbolic Patch Testing

commit

KATCH

test1 test4

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819

+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922

@@ -2422,8 +2424,11 @@

 info << "none\n";

 } else {

 const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

 info << "object at " << mo->address

- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n“;

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

 Symbolic Patch Testing Input	

Patch
+ if (errno == ECHILD)
+ { log_error_write(srv,
__FILE__, __LINE__, "s",
”...");

+ cgi_pid_del(srv, p,
p->cgi_pid.ptr[ndx]);

Program

1. Select the regression
input closest to the patch
(or partially covering it)

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

 Symbolic Patch Testing

Program

Input	

Patch

2. Greedily drive
exploration toward
uncovered statements in
the patch

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

 Symbolic Patch Testing Input	

3. If stuck, identify the
constraints that disallow
execution to reach the
patch, and backtrack

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

Program

Patch

84

void log(char input) {
 int file = open(”access.log”…);
 if (input >= ’␣’ && input <= ’~’) {
 // printable characters
 write(file, &input, 1);
 + } else {
 + char escinput = escape(input);
 + write(file, &escinput, 1);
 + }
 close(file);
}

lighttpd r2660: patch
modifies log() to escape
sensitive characters

Greedy Exploration Step

85

void log(char input) {
 int file = open(”access.log”…);
 if (input >= ’␣’ && input <= ’~’) {
 // printable characters
 write(file, &input, 1);
 + } else {
 + char escinput = escape(input);
 + write(file, &escinput, 1);
 + }
 close(file);
}

Available input: “t”
(or any printable char)

1.  Greedy step: choose
the symbolic branch
point whose
unexplored side is
closest to the patch.

2.  Explore this side!

Greedy Exploration Step

86

void log(char input) {
 if (input >= ’␣’ && input <= ’~’) {
 . . .
 } else {
+ . . .
 }
}

if (0 == strcmp(request, “GET”)
 . . .
for (char* p = request; *p; p++)
 log(*p);

Available input: “GET”

1.  Backtrack to the last
symbolic branch
that disallows this
side to be executed

2.  Explore the other
side of that branch

Informed Path Regeneration

Greedy step fails!

req[2] ≠ ‘T’

enum escape_t escape;
void log(char input) {
 if (escape == ESCAPE_ALL) {
+ . . .
 }

opt = getopt_long(argc, argv, ...);
switch (opt) {
 case ‘a’: escape = ESCAPE_SPACE;
 break;
 case ‘b’: escape = ESCAPE_ALL;
. . .
log(…);

Available test: opt = ‘a’

1.  Find all reaching
definitions for the
variables involved and try
to cover another one.

2.  Favors definitions that
can be statically shown to
satisfy target, or
unexecuted definitions

Definition Switching

Backtracking step fails!

Patch guarded by
concrete branch

Input Selection
Naïve solution: calculate the
context-sensitive static distance
between the path executed by an
input and the patch code

if (x < 100)
 f(x);
else
 if (x > 200)
 f(x+1);

void f(int x) {
 if (x % 2 == 0)
 PATCH;
 . . .

x < 100

x%2 == 0 x > 200

x%2 == 0

x < 100

x%2 == 0 x > 200

x%2 == 0

x = 55

x = 155

 1

 2

Input Selection
Naïve solution: calculate the
context-sensitive static distance
between the path executed by an
input and the patch code

if (x < 100)
 f(x);
else
 if (x > 200)
 f(x+1);

void f(int x) {
 if (x == 999)
 PATCH;
 . . .

x < 100

x == 999 x > 200

x == 999

x < 100

x == 999 x > 200

x == 999

x = 55  1

x = 155  2

Input Selection: Weakest Preconditions
For which basic block in the
program, compute a necessary
condition for reaching the target.
Prune CFG edges which make
the target unreachable.

if (x < 100)
 f(x);
else
 if (x > 200)
 f(x+1);

void f(int x) {
 if (x == 999)
 PATCH;
 . . .

x < 100

x == 999 x > 200

x == 999

x = 55  3

x < 100

x == 999 x > 200

x == 999

x = 155  2

Example: Lighttpd r2631

91

Powers several popular sites such as YouTube and Wikipedia

[SPIN 2012]

Revision ELOC Covered ELOC
Regression KATCH

2631 20 15 (75%) 20 (100%)

https://zz.example.com/ http://zzz.example.com/ KATCH

Lighttpd r2660

92

Revision ELOC Covered ELOC
Regression KATCH

2660 33 9 (27%) 24 (72%)

165 if (str−>ptr[i] >= ’␣’ && str−>ptr[i] <= ’~’) {
166 /* printable chars */
167 buffer_append_string_len(dest,&str −>ptr[i],1);
168 } else switch (str−>ptr[i]) {
169 case ’"’:
170 BUFFER_APPEND_STRING_CONST(dest, "\\\"");
171 break;

Bug reported and fixed promptly by developers

Extended Evaluation (WiP)

93

Key evaluation criteria: no cherry picking!
•  choose all patches for an application over a

contiguous time period

FindUtils suite (FU)
find, xargs, locate

12,648 ELOC 125 patches written
over ~26 months

DiffUtils suite (DU)
s/diff, diff3, cmp

55,655 ELOC
+ 280,000 in libs

175 patches written
over ~30 months

BinUtils suite (BU)
ar, elfedit, nm, etc.

81,933 ELOC
+ 800,000 in libs

181 patches written
over ~16 months

Patch Coverage (basic block level)

TEST Uncovered

100% 63% 0%

FU:

TEST

100% 0%

BU: Uncovered

18%

Standard symbolic execution (30min/BB) only added +1.2% to FU

TEST Uncovered

100% 35% 0%
DU:

Patch Coverage
(current results – ongoing work)

TEST + KATCH Un

87% 100% 63% 0%

FU: 10min/BB

Standard symbolic execution (30min/BB) only added +1.2% to FU

TEST + KATCH Uncovered

73% 100% 35% 0%
DU: 10min/BB

TEST

100% 27% 0%

BU: K Uncovered

18%

15min/BB

Binutils: Coverage+Bugs
(current results)

96

•  Found 14 distinct crash bugs, all in BU
•  All unreachable by standard symbolic execution

•  12 bugs still present in latest version
•  Reported (some already fixed) by developers

•  10 bugs found in the patch code itself or in code
affected by patch code

TEST

100% 27% 0%

BU: K Uncovered

18%

15min/BB

KLEE – Demo
h"p://klee.llvm.org	

•  bad_abs
•  xcheck_abs
•  squares

•  Automatically reasons about program behavior
and the interaction with users and environment

•  Can generate inputs exposing both generic and
semantic bugs in complex software
•  Including file systems, library code, utility applications,

network servers, device drivers, computer vision code

Dynamic Symbolic Execution

98

KLEE: Freely Available as Open-Source
h"p://klee.llvm.org	

•  Over 250 subscribers to the klee-dev mailing list
•  Extended in many interesting ways by several

research groups, in the areas of:
•  wireless sensor networks/distributed systems
•  schedule memoization in multithreaded code
•  automated debugging
•  exploit generation
•  client-behavior verification in online gaming
•  GPU testing and verification
•  etc.

