
Combining Dynamic Symbolic Execution (DSE)
 with Search-Based Software Testing (SBST)

Cristian Cadar
Department of Computing
Imperial College London

SBST Keynote
3 June 2014, Hyderabad, India

DSE & SBST: Testing

2

DSE & SBST: Research

DSE & SBST: Practice

“Finding all these bugs has
saved millions of dollars to
Microsoft… The software
running on your PC has
been affected by SAGE”

 Godefroid, Levin, Molnar
ACM Queue 2012

“Applying SBST in industry”

Diverging Roads?

DSE SBST

Dynamic Symbolic Execution

•  Dynamic symbolic execution is a technique for
automatically exploring paths through a program
•  Determines the feasibility of each explored path using a

constraint solver
•  Checks if there are any values that can cause an error on

each explored path
•  For each path, can generate a concrete input triggering

the path

Dynamic Symbolic Execution

•  Received significant interest in the last few years
•  Many dynamic symbolic execution/concolic tools

available as open-source:
–  CREST, KLEE, SYMBOLIC JPF, etc.

•  Started to be adopted/tried out in the industry:
–  Microsoft (SAGE, PEX)
–  NASA (SYMBOLIC JPF, KLEE)
–  Fujitsu (SYMBOLIC JPF, KLEE/KLOVER)
–  IBM (APOLLO)
–  etc.

Symbolic Execution for Software Testing in Practice:
Preliminary Assessment. Cadar, Godefroid, Khurshid,
Pasareanu, Sen, Tillmann, Visser, [ICSE Impact 2011]

magic ≠
0xEEEE

magic =
0xEEEE

img = *

Toy Example

TRUE

int main(int argc, char** argv) {
 ...
 image_t img = read_img(file);
 if (img.magic != 0xEEEE)
 return -1;
 if (img.h > 1024)
 return -1;
 w = img.sz / img.h;
 ...
}

magic ≠
0xEEEE

return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

w = sz / h

struct image_t {
 unsigned short magic;

 unsigned short h, sz;
 ...

magic ≠
0xEEEE

magic =
0xEEEE

img = *

AAAA0000…
img1.out

TRUE
return -1

h > 1024 TRUE

h > 1024
return -1

h ≤ 1024

EEEE1111…
img2.out

h = 0
TRUE
h = 0

Div by
zero!

h ≠ 0

EEEE0A00… img4.out

EEEE0000…
img3.out

w = sz / h

magic ≠
0xEEEE

int main(int argc, char** argv) {
 ...
 image_t img = read_img(file);
 if (img.magic != 0xEEEE)
 return -1;
 if (img.h > 1024)
 return -1;
 w = img.sz / img.h;
 ...
}

struct image_t {
 unsigned short magic;

 unsigned short h, sz;
 ...

Toy Example

DSE Applications

Successfully used our DSE tools to:
•  Automatically generate high-coverage test suites
•  Discover generic bugs and security vulnerabilities

in complex software
•  Perform comprehensive patch testing
•  Find semantic bugs via crosschecking
•  Perform bounded verification

10

Some Applications We Tested
Focus on Systems and Security Critical Code

•  Most bugs fixed promptly

11

Applications
Text, binary, shell and
file processing tools

GNU Coreutils, findutils, binutils, diffutils,
Busybox, MINIX (~500 apps)

Network servers Bonjour, Avahi, udhcpd, lighttpd, etc.
Library code libdwarf, libelf, PCRE, uClibc, etc.
File systems ext2, ext3, JFS for Linux

Device drivers pci, lance, sb16 for MINIX
Computer vision code OpenCV (filter, remap, resize, etc.)

OpenCL code Parboil, Bullet, OP2

Disk of Death (JFS, Linux 2.6.10)

Offset Hex Values
00000 0000 0000 0000 0000 0000 0000 0000 0000

.
08000 464A 3135 0000 0000 0000 0000 0000 0000
08010 1000 0000 0000 0000 0000 0000 0000 0000
08020 0000 0000 0100 0000 0000 0000 0000 0000
08030 E004 000F 0000 0000 0002 0000 0000 0000
08040 0000 0000 0000 . . .

•  64th sector of a 64K disk image
•  Mount it and PANIC your kernel

[Oakland 2008]

Packet of Death (Bonjour)

Offset Hex Values
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010
0020 00FB 0000 14E9 002A 0000 0000 0000 0001
0030 0000 0000 0000 055F 6461 6170 045F 7463
0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

•  Causes Bonjour to abort, potential DoS attack
•  Confirmed and fixed by Apple

[ICCCN 2011]

Scalability Challenges

Path Exploration Challenges

15

•  Employing search heuristics
[CCS’06, OSDI’08, ICSE’12, FSE’13]

•  Dynamically eliminating redundant
paths [TACAS’08]

•  Statically merging paths [EuroSys’11]
•  Using existing regression test suites to

prioritize execution [ICSE’12, FSE’13]
•  etc.

Search Heuristics

Which path should we explore next?
•  Coverage-optimized search
•  Query time-optimized search
•  Best-first search
•  Random path search
•  etc.

16
[CCS’06, OSDI’08, ICSE’12, etc.]

17

Coverage-optimized Search

2

3

1

2

1

4

5

3

2

4

1

2

1

3

2 2

D

D = distance to an uncovered instruction
Randomly select a path, with each path weighted by 1/D2

18

Solver Time-optimized Search

T = time spent in constraint solver
Randomly select a path, with each path weighted by1/T

199

50

100

11

200

45

90

120

180

15

200 200 200

30 30
40

T

Random Path Selection

•  NOT randomly selecting a path
•  Favors paths high in the tree

–  fewer constraints

•  Avoid starvation
–  e.g. symbolic loop

0.5

0.25

0.1250.06250.0625

•  Maintain a binary tree of
active paths

•  Subtrees have equal prob. of
being selected, irresp. of size

19

Which Search Heuristic?

20

We typically use multiple search heuristics in a
round-robin fashion, to protect against individual
heuristics getting stuck in a local maximum.

21

Can SBST Help?

•  Search heuristics key to the success of DSE
•  Heuristics are at the very core of SBST

•  What are the SBST lessons applicable here?

$ cd lighttpd-1.4.29
$ make check

...

./cachable.t ok

./core-404-handler.t .. ok

./core-condition.t ok

./core-keepalive.t ok

./core-request.t ok

./core-response.t ok

./core-var-include.t .. ok

./core.t ok

./lowercase.t ok

./mod-access.t ok

...

Seeding in Symbolic Execution
Using Existing Regression Suites

•  Most applications come
with a manually-written
regression test suite

[ICSE’12]

Regression Suites

23

•  Execute each path
with a single set of
inputs

•  Often exercise the
general case of a
program feature,
missing corner cases

CONS
•  Designed to execute

interesting program
paths

•  Often achieve good
coverage of different
program features

PROS

Seeding in Symbolic Execution

1.  Use the paths executed by the regression suite to
bootstrap the exploration process (to benefit from
the coverage of the manual test suite and find
additional errors on those paths)

2.  Incrementally explore paths around the dangerous
operations on these paths, in increasing distance
from the dangerous operations (to test all possible
corner cases of the program features exercised by
the test suite)

[ICSE’12]

ZESTI:
Bounded Symbolic Execution

main(argv, argc)

exit(0)

✓

dangerous operations
divergence point

✗ Bounded symbolic execution

Bounded symbolic execution

ZESTI Results [ICSE’12]

•  Found 52 previously unknown bugs, most
of which are out of reach of standard DSE

•  Additional advantage: generated inputs are
close to those in the regression test suite

26

cut -c1-3,2-4,6- --output-d=: foo

cut -c1-3,2-4,8- --output-d=: foo

ZESTI

• 1 test4

KATCH: High-Coverage
Symbolic Patch Testing

commit

KATCH

test1 test4

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819

+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922

@@ -2422,8 +2424,11 @@

 info << "none\n";

 } else {

 const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

 info << "object at " << mo->address

- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n“;

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

[SPIN 2012, ESEC/FSE 2013]

 Symbolic Patch Testing Input	

Patch
+ if (errno == ECHILD)
+ { log_error_write(srv,
__FILE__, __LINE__, "s",
”...");

+ cgi_pid_del(srv, p,
p->cgi_pid.ptr[ndx]);

Program

1. Select the regression
input closest to the patch
(or partially covering it)

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

 Symbolic Patch Testing

Program

Input	

Patch

2. Greedily drive
exploration toward
uncovered statements in
the patch

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

Our notion of estimated
distance used to drive

exploration is similar to
that of fitness in SBST.

 Symbolic Patch Testing Input (Seed)	

3. If stuck, identify the
constraints/bytes that
disallow execution to
reach the patch, and
backtrack

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

Program

Patch

 Symbolic Patch Testing

 Combines symbolic execution with
various program analyses such as
weakest preconditions for input
selection, and definition switching for
backtracking

• 1 test4 test1 test4

test3
test4

test4

bug

test4

test4

test4

test4 test4 test4 test4 test4

test4

test4 test4

test4 test4

bug bug

test4

KATCH

Program

Patch

[ESEC/FSE 2013]

Input (Seed)	

KATCH: Evaluation

Key evaluation criteria: no cherry picking!
•  choose all patches for an application over a

contiguous time period

FindUtils suite (FU)
find, xargs, locate

12,648 ELOC 125 patches written
over ~26 months

DiffUtils suite (DU)
s/diff, diff3, cmp

55,655 ELOC
+ 280,000 in libs

175 patches written
over ~30 months

BinUtils suite (BU)
ar, elfedit, nm, etc.

81,933 ELOC
+ 800,000 in libs

181 patches written
over ~16 months

[ESEC/FSE 2013]

Patch Coverage (basic block level)

TEST Uncovered

100% 63% 0%

FU:

TEST

100% 0%

BU: Uncovered

18%

TEST Uncovered

100% 35% 0%
DU:

Patch Coverage (basic block level)

TEST + KATCH Un

87% 100% 63% 0%

FU: 10min/BB

TEST + KATCH Uncovered

73% 100% 35% 0%
DU: 10min/BB

TEST

100% 33% 0%

BU: +K Uncovered

18%

15min/BB

Binutils Bugs

•  Found 14 distinct crash bugs
•  12 bugs still present in latest version of BU

•  Reported and fixed by developers
•  10 bugs found in the patch code itself or in code

affected by patch code

TEST

100% 33% 0%

BU: +K Uncovered

18%

15min/BB

KATCH + SBST?

[Best Artifact Award at ESEC/FSE 2013, so should be
relatively painless to reproduce our results]

TEST + KATCH Un FU:

TEST + KATCH Uncovered DU:

TEST BU: +K Uncovered

•  Still lots of opportunities for improvement
•  We make KATCH and all our experimental data

available

Seeds as
Communication Primitive?

37

Seeds

Seeds Tests

Tests Seeds

Tests Seeds

Tests Seeds

Tests Seeds

DSE-based mutator operator
[Malburg & Fraser, ASE 2011]

38

New inputs

Negate branch	

Seeds
(initial population)

Mutated inputs	

. . .
“Experiments on 20 case study examples show that on average
the combination improves branch coverage by 28% over search-
based techniques and by 13% over constraint-based techniques.”

39

Symbolically-enhanced Fitness Function
[Baars, Harman, Hassoun, Lakhotia, McMinn, Tonella, Vos, ASE’11]

Approach level Branch distance +

•  “Traditional” code-level SBST fitness function:

•  Use (static) symbolic execution to consider all paths
to the target (with some approximation for loops)

Essentially consider the
shortest path to the target

“On average, the local search requires 23.41% and the global
search 7.78% fewer fitness evaluations when using a
symbolic execution based fitness function”

•  Can DSE be used instead? If so, what paths should be
considered?

40

Fitness-guided Path Exploration
[Xie, Tillmann, de Halleux, Schulte, DSN’09]

•  The search heuristics discussed
above struggle, because they
ignore values on each path

•  “Traditional” SBST fitness
functions can help

•  E.g., select path which
minimizes branch distance
(here |nz-100|)

•  One additional problem is that
fitness evaluations may result
in symbolic values, which are
expensive to compare

a = symbolic!
int nz = 0;!
for (i=0; i < N; i++)!
 if (a[i] == 0)!
 nz++;!
if (nz == 100)!
 // BUG!
! New inputs Selected input

Fitness
evaluation	

41

Fitness-guided Path Exploration
[Xie, Tillmann, de Halleux, Schulte, DSN’09]

•  “our approach is effective since it consistently achieves
high code coverage faster than existing search
strategies” [on 30 case studies containing the “essence
of an individual exploration problem” compared with
random, DFS, BFS, Pex-Fitnex)]

•  “integration of Fitnex and other strategies achieves the
effect of getting the best of both in practice”

Scalability Challenges:
Constraint Solving

42

Constraint Solving: Performance

•  Inherently expensive
•  Invoked at every branch

Optimisations can be implemented at several
different levels:
•  SAT solvers
•  SMT solvers
•  Symbolic execution tools
 43

44

Search-Based Floating Point Constraint Solving
[Lakhotia, Tillmann, Harman, de Halleux, ICTSS’10]

SAT-based FP constraint solvers face serious
scalability challenges
•  SBST can help

“Results from a set of benchmark functions show that it is
possible to increase the effectiveness of what might be called
“vanilla DSE”. However, a study on two open source programs
also shows that for the solvers to be effective, they need to be
given adequate resources in terms of wall clock execution time,
as well as a large fitness budget.”

Caching Solutions

2 * y < 100
x > 3
x + y > 10

x = 5
y = 15

2 * y < 100
x + y > 10

2 * y < 100
x > 3
x + y > 10
x < 10

•  Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5
y = 15

x = 5
y = 15

[OSDI’08]

Caching Solutions

2 * y < 100
x > 3
x + y > 10
x < 10

•  How many sets should we keep?

•  Which subsets should we try, and in what order?
•  Currently: all, in no particular order

•  Should we try to see if any prior solution works (not just
subsets)?

Adding constraints often
does not invalidate solution

x = 5
y = 15

2 * y < 100
x + y > 10

Eliminating constraints
cannot invalidate solution

x = 5
y = 15

More on Caching: Instrs/Sec
Application No caching Caching Speedup
[3,914 695 0.17
base64 18,840 20,520 1.08
chmod 12,060 5,360 0.44
comm 73,064 222,113 3.03
csplit 10,682 19,132 1.79
dircolors 8,090 1,019,795 126.05
echo 227 52 0.22
env 21,995 13,246 0.60
factor 1,897 12,119 6.38
join 12,649 1,033,022 81.66
ln 13,420 2,986 0.22
mkdir 25,331 3,895 0.15
Avg: 16,847 196,078 11.63x

•  Instrs/sec on ~1h
runs, using DFS,
w/ and w/o caching

[CAV’13]

 Need for better,
more adaptive
caching algorithms!

www

Can SBST help?

Portfolio of SMT Solvers

KLEE

metaSMT

x = 3

x = -2

x = 1234

x = 3

C code

x ≥ 0
x ≠ 1234

STP Boolector Z3
[CAV’13]

...

STP2 STPn

...

Given limited resources,
which solvers and
configurations should
we choose?

www

Can SBST help?

DSE SBST

DSE

DSE+SBST

SBST

