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Abstract. Requirements Engineering involves the elicitation of high-
level stakeholder goals and their refinement into operational system re-
quirements. A key difficulty is that stakeholders typically convey their
goals indirectly through intuitive narrative-style scenarios of desirable
and undesirable system behaviour, whereas goal refinement methods usu-
ally require goals to be expressed declaratively using, for instance, a
temporal logic. Currently, the extraction of formal requirements from
scenario-based descriptions is a tedious and error-prone process that
would benefit from automated tool support. We present an ILP method-
ology for inferring requirements from a set of scenarios and an initial but
incomplete requirements specification. The approach is based on trans-
lating the specification and scenarios into an event-based logic program-
ming formalism and using a non-monotonic ILP system to learn a set
of missing event preconditions. The contribution of this paper is a novel
application of ILP to requirements engineering that also demonstrate the
need for non-monotonic learning.

1 Introduction

Requirements Engineering refers to all aspects of the software development life-
cycle concerned with identifying, analysing and documenting stakeholder re-
quirements [2]. Several approaches have been developed to assist Requirements
Engineers in the refinement of high-level goals into operational requirements
[12,13] declaratively expressed in a temporal logic [16]. The use of a temporal
formalism enables the deployment of automated analysis and refinement tools,
but is not directly accessible to most stakeholders with a less technical back-
ground. In practice, stakeholders prefer to convey their goals through more in-
tuitive narrative-style scenarios of desirable and undesirable system behaviour
[30]. Because scenarios are inherently partial descriptions that leave require-
ments implicitly defined, it is necessary to synthesise a declarative requirements
specification that admits the desired behaviours while rejecting the undesired
ones. Currently, the extraction of declarative requirements from scenario-based
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descriptions is a tedious and error-prone process that relies on the manual efforts
of an experienced engineer and would benefit from automated tool support.

This paper presents an ILP approach for extracting requirements from example
scenarios and a partial requirements specification. Scenarios represent examples
of desirable and undesirable system behaviour over time while the requirements
specification captures our initial but incomplete background knowledge of the en-
visioned system and its environment. The task is to complete the specification by
learning a set of missing requirements that cover all of the desirable scenarios, but
none of the undesirable ones. We show how this task can be naturally represented
as a non-monotonic ILP problem in which the partial requirements specification
provides the background knowledge and the scenarios comprise the positive and
negative examples. In particular, we show how the initial specification and sce-
narios can be translated into an ILP representation based on the Event Calculus
[8,17]. Because this representation makes essential use of negation in formalising
the effects and non-effects of actions, the resulting learning problem is inherently
non-monotonic. We show that, under the stable model [4] semantics for logic pro-
grams with negation, the stable models of the transformed program correspond to
the temporal models of the original specification. We show that stable models of
the program correspond to the temporal models of the original specification. We
then use a non-monotonic ILP system, called XHAIL [24,25], to generalise the sce-
narios with respect to the initial specification. For the purposes of illustration, we
restrict the language bias of XHAIL so as to compute a specific form of missing
requirements, called event preconditions, which state that a certain event may not
happen under some particular conditions.

The paper is organised as follows. Section 2 presents some background ma-
terial on Linear Temporal Logic (LTL) and the Event Calculus (EC). Section 3
describes the main features of our approach. Section 4 provides an illustrative
case study involving a Mine Pump controller. We conclude with a summary and
remarks about related and future work.

2 Background

Several logic-based formalisms have been used for representing requirements
specifications [5,10,27]. Among these, the Event Calculus (EC) [8] is particu-
larly well suited to logic programming approaches like ILP. Moreover, its explicit
representation of time and domain specific axioms makes EC an ideal formal-
ism for representing and reasoning about a wide class of event-driven systems.
Although EC has been successfully used as a “back-end” computational formal-
ism [27] it is not a mainstream representation because it necessitates familiarity
with logic programming. By contrast, Linear Temporal Logic (LTL) [16] is very
widely used by software engineers for specifying system goals and properties. In
this paper we propose a method for translating between LTL and EC descrip-
tions in order to enable the use of ILP techniques in Requirements Engineering.
In the rest of this section we briefly recall the syntax and semantics of these
formalisms.
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2.1 Linear Temporal Logic

The language of LTL includes a set of propositions P , the Boolean connectives
(¬, ∧, ∨ and →) and the temporal operators © (next), � (always), ♦ (eventually),
U (strong until) and W (weak until). Well-formed formulae are constructed in the
standard way. We use (¬) a to refer to either the atom a or the negation ¬ a
of that atom. Also, we use ©i to denote i consecutive applications of the ©
operator. We assume P is partitioned into two sets Pe and Pf denoting event
and fluent propositions, respectively. The truth or falsity of an LTL formulae is
specified relative to a graph-based structure called a Labelled Transition System
(LTS) [15,6].

Definition 1. A labelled transition system (LTS) is a tuple 〈S, E, →, s0〉 where
S is a non-empty set of states, E is a non-empty set of events, → ⊆ S×E×S is a
labelled transition relation, and s0 is the initial state. A transition (s, e, s′) ∈ →
from a state s to a new state s′ labelled by e is denoted graphically as s

e−→ s′.
A path in an LTS is a sequence of states and transitions, from the initial state,
of the form σ = s0

e1−→ s1, . . . where ei ∈ E is said to be at position i in σ and
si is said to be the ith state in σ.

As formalised in Definition 2 below, an LTL model is a pair 〈T, V 〉 consisting of
an LTS, T , and a valuation function, V , that assigns to each fluent proposition
an arbitrary set of states in paths of T . The events are not specified in V as
their truth is implicitly determined by the transitions in T . This is formalised in
Definition 3, which defines the satisfaction of an LTL formula φ with respect to
a path σ in the LTS T .

Definition 2. Given an LTL language with propositions P = Pe ∪ Pf an LTL
model is a pair 〈T, V 〉 where T is an LTS with events Pe and V is a valuation
function V : Pf ⇒ 2A, where A = {(σ, i) | σ path in T and i position in σ}.

The satisfiability of an LTL formula is defined with respect to positions (or
states) in a given path σ. A formula φ is said to be true at position i in a path
σ, denoted σ, i |= φ iff it is true at the si state in the path σ.

Definition 3. Given an LTL language with propositions P = Pe ∪ Pf , an LTL
model 〈T, V 〉 and a path σ in T , the satisfaction of an LTL formula φ at a
position i ≥ 0 of the path σ is defined inductively as follows:

– σ, 0 |= e for any event proposition e ∈ Pe

– σ, i |= e iff e is at position i (i ≥ 1) in the path σ, where e ∈ Pe

– σ, i |= f iff (σ, i) ∈ V (f), where f ∈ Pf

– σ, i |= ¬φ iff σ, i |= φ
– σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ
– σ, i |= φ ∨ ψ iff σ, i |= φ or σ, i |= ψ
– σ, i |= ©φ iff σ, i + 1 |= φ
– σ, i |= �φ iff ∀j ≥ i. σ, j |= φ
– σ, i |= ♦φ iff ∃j ≥ i. σ, j |= φ



Extracting Requirements from Scenarios with ILP 67

– σ, i |= φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ
– σ, i |= φ W ψ iff σ, i |= �φ or σ, i |= φ U ψ

An LTL formula φ is said to be satisfied in a path σ if it is satisfied at the initial
position, i.e. σ, 0 |= φ. Similarly, a set of formulae Γ is said to be satisfied in a
path σ if each formula ψ ∈ Γ is satisfied in the path σ.

Definition 4. Let Γ be a set of LTL formulae and φ be an LTL formula. Let
M = 〈T, V 〉 be an LTL model. The formula φ is said to be entailed by Γ under
M , written Γ |=M φ, iff φ is satisfied in each path σ of T that satisfies Γ .

2.2 Event Calculus

The Event Calculus (EC) is a widely-used logic programming formalism for
reasoning about actions and time [29]. The standard definition of an EC language
includes three sorts of terms: event terms, fluent terms, and time terms. The
latter are represented by the non-negative integers 0, 1, 2, . . ., while the events
and fluents are chosen according to the domain being modelled. In this paper, we
assume an additional sort representing scenarios. The EC ontology includes the
basic predicates happens, initiates, terminates and holdsAt. The atomic formula
happens(e, t, s) indicates that event e occurs at time-point t in a given scenario
s, while initiates(e, f, t, s) (resp. terminates(a, f, t, s)) means that, in a given
scenario s, if event e were to occur at time t, it would cause fluent f to be true
(resp. false) immediately afterwards. The predicate holdsAt(f, t, s) indicates that
fluent f is true at time-point t in a given scenario s. The formalism also includes
an auxiliary predicate clipped(t1, f, t2, s) which means that, in a given scenario s,
an event occurs which terminates f between times t1 and t2. Events correspond
to actions which can be performed, while fluents correspond to time-varying
Boolean properties. The interactions between the EC predicates are governed
by a set of domain-independent core axioms shown below1.

clipped(T1, F, T2, S)←happens(E, T, S),
terminates(E, F, T, S), T1 ≤ T < T2.

(1)

holdsAt(F, T2, S)←happens(E, T1, S), initiates(E, F, T1, S),
T1 < T2,not clipped(T1, F, T2, S). (2)

holdsAt(F, T, S)← initially(F, S), not clipped(0, F, T, S). (3)

happens(E, T, S)←attempt(E, T, S),not impossible(E, T, S). (4)

These axioms formalise the commonsense law of inertia which states that, in
any scenario S, a fluent that has been initiated by an event occurrence continues
1 The EC axioms used here are identical to those in [17] apart from the extra argu-

ment S for representing scenarios and the predicate impossible for capturing pre-
conditions.
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to hold until a terminating event occurs and vice versa. To allow the representa-
tion of preconditions, we say that an event E happens at a time point T if it is
attempted and is not impossible2. Information about which events affect which
fluents is provided by domain-dependent axioms for the predicates initiates and
terminates, together with information about which fluents are initially true and
which events are attempted in given system behaviours.

EC theories are normal logic programs - i.e. a set of clauses of the form
A ← B1, . . . , Bn, not C1, . . . , not Cm where A is the head atom, Bi are posi-
tive body literals, and not Cj are negative body literals. Their semantics is given
by the standard stable model semantics [4]. In general, a model I of a program Π
is a set of ground atoms such that, for each ground instance G of a clause in Π ,
I satisfies the head of G whenever it satisfies the body. A model I is minimal
if it does not strictly include any other model. Definite programs (i.e. programs
with no negative body literals) always have a unique minimal model. Normal
programs may have instead one, none, or several minimal models. It is usual to
identify a certain subset of these models, called stable models, as the possible
meanings of the program. Given a normal program Π , the definite program ΠI

is the program obtained from the ground instances of Π by removing all clauses
with a negative literal that is not satisfied in Π and removing negative literals
from the remaining clauses. Clearly ΠI is a definite logic program and as such
has a unique minimal (Herbrand) model MΠI . A model I of a program Π is
stable if it is equal to MΠI .

Definition 5. A model I of Π is a stable model if I = MΠI where ΠI is the
definite program ΠI = {A ← B1, . . . , Bn | A ← B1, . . . , Bn, not C1, . . . , not Cm

is the ground instance of a clause in Π and I does not satisfy any of the Cj}.

3 The Approach

In this section we show how ILP can be used to extend an incomplete require-
ments specification using information from given scenarios. We formalise the
learning problem in terms of LTL specifications and scenarios, and show how
these can be soundly translated into a non-monotonic ILP problem using an EC
formalisation to extend the specification in order to cover the given scenarios.

3.1 Problem Description

Our aim is to develop an approach for extending an incomplete requirements
specification with a particular type of requirement called event preconditions
by using information inferred from desirable and undesirable user scenarios. In
order to formalise this task we need to state precisely what we mean by a re-
quirements specification and by a desirable or undesirable scenario and we need

2 Alternative formalisations of event preconditions have been proposed in EC [17]. The
one adopted here captures the intuition that impossible(E, T, S) means the event E
could not actually occur at time point T .
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to define what it means for a specification to cover a set of such scenarios. To
do this, we assume an LTL language with fluents Pf and events Pe in which
each fluent f ∈ Pf is associated with two disjoint sets If and Tf of initiating
and terminating events e ∈ Pe. For convenience we use the notation Ef

I to rep-
resent the disjunction

∨
e∈If

e of f -initiating events, and Ef
T for the disjunction

∨
e∈Tf

e of f -terminating events. We also use the notation S0 to represent the
set of fluents f ∈ Pf that are true in the initial system state s0. We now define
requirements specifications and scenarios as LTL theories containing formulae of
the forms defined below.

As formalised in Definition 6, a requirements specification consists of a set
of initial state axioms (5,6) stating which fluents are initially true and false;
persistence axioms (7,8) formalising the commonsense law of inertia that any
fluent will remain true (resp. false) until a terminating (resp. initiating) event
occurs that causes it to flip state; change axioms (9,10), stating that, for any
fluent f ∈ Pf , the occurrence of any initiating (resp. terminating) event will
cause f to become true (resp. false); and a set of event precondition axioms (11)
which disallow any models that include transitions of the form sk

e−→ sk+1 for
any state sk that satisfies a certain conjunction of fluent literals

∧
0≤i≤n(¬)fi.

Definition 6. A requirements specification is an LTL theory consisting of

– two initial state axioms ∧
fi∈S0

fi (5)
∧

fj∈Pf−S0
¬fj (6)

– two persistence axioms for each fluent f ∈ Pf

�(f → f W Ef
T ) (7)

�(¬f → ¬f W Ef
I ) (8)

– two change axioms for each fluent f ∈ Pf

�(Ef
I → f) (9)

�(Ef
T → ¬f) (10)

– a set of event precondition axioms of the form

�(
∧

0≤i≤n(¬)fi → ©¬e) (11)

As formalised below, a scenario is a formula stating a sequence of occurrences
of events 〈e1, . . . , em〉.

Definition 7. A scenario is an LTL formula of the form
∧

1≤i≤m ©iei (12)
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Note that the definition above assumes one event to be true per point position.
A desirable scenario is a scenario that may occur while an undesirable scenario
is a sequence of events that should never occur.

Using Definition 7, we can now formalise our learning task. Given an initial
specification Spec together with a set of undesirable scenarios Und and desirable
scenarios Des, our aim is to learn a set of event precondition axioms Pre that,
when added to Spec, entails the negation of each undesirable scenario and is
consistent with each desirable scenario. As formalised in Definition 8, the first
condition states that, in any model of Spec ∪ Pre, there is no path which
produces any undesirable scenario in Und, while the second condition states
that, in any model of Spec ∪ Pre, there is always a path corresponding to each
desirable scenario in Des. Any set of event precondition axioms that satisfy these
two properties is said be a correct extension of a requirements specification with
respect to the given scenarios.

Definition 8. Let Spec be a requirements specification, Des be a set of desirable
scenarios, and Und be a set of undesirable scenarios. A set Pre of event precon-
dition axioms is a correct extension of Spec with respect to Des and Und iff

• Spec ∪ Pre |=M ¬Pu, for each undesirable scenario Pu ∈ Und
• Spec ∪ Pre |=M ¬Pd, for each desirable scenario Pd ∈ Des

3.2 Translating LTL into EC

To apply ILP to the task of learning correct extensions, a methodology is now
defined for translating LTL specifications and scenarios of the form defined above
into EC normal logic programs. The EC language is obtained very simply from
the LTL formulae: one fluent (resp. event) term is introduced to represent each
fluent f (resp. event e) in Pf (resp. Pe); time points are represented by the non-
negative integers 0, 1, 2, . . .; one scenario term is introduced to represent each
desirable (resp. undesirable) scenario Pd ∈ Des (resp. Pu ∈ Und). Relative to
this language, the EC translation of a requirements specification is defined as
follows.

Definition 9. Let Spec be a requirements specification. The EC translation
τ(Spec) of Spec is the EC program Π constructed as follows:

– add to Π one fact initially(fi, S) for each fluent fi in an initial state axiom
of the form

∧
fi∈S0

fi.

– add to Π one fact initiates(e, f, T, S) for each f -initiating event e ∈ Ef
I in

a change axiom of the form �(Ef
I → f).

– add to Π one fact terminates(e, f, T, S) for each f -terminating event e ∈ Ef
T

in a change axiom of the form �(Ef
T → ¬f).
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– add to Π one rule impossible(e, T, S) ←
∧

0≤i≤k(not)holdsAt(fi, T, S) for
each event precondition axiom of the form �(

∧
0≤i≤k(¬)fi → ©¬e).

Note that the negative initial state axiom (6) and the persistence axioms (7)
and (8) are all implicitly captured by stable model interpretation of the EC core
axioms (which are incorporated into the translation of scenarios in Definition
10 below). Note also that the effect of the temporal operator � is captured by
implicit universal quantification on the time variable T appearing in the initiates
and terminates facts. As shown in Theorem 1, the translation τ is sound in the
sense that for any path σ in any model of Spec there is a corresponding narrative
of events Nar such that the program Π = τ(Spec) ∪ Nar has a stable model
that satisfies the same fluent and event formulae as σ.

Theorem 1. Let Spec be a requirements specification with LTL model 〈T, V 〉
such that any path in T satisfies Spec at position 0. Let σ be a path in T of
the form s0

e1−→ s1, . . . , sn−1
en−→ sn, and let Nar be the set of facts of the

form attempt(ei, i − 1, σ) for each event ei in σ. Let Π be the EC logic program
Π = τ(Spec) ∪ Nar with stable model I. Then, for any fluent f and position
i, we have σ, i |= f iff holdsAt(f, i, σ) is true in I; and, for any event e and
position i, we have σ, i |= e iff happens(e, i − 1, σ) is true in I.

The function τ translates an LTL requirements specification into an ILP theory.
It now remains to specify a corresponding translation from scenarios to ILP
examples. As formalised in Definition 10 below, scenarios contribute facts to the
background theory as well as to the examples. Specifically, each scenario produces
a set of example literals of the form (not)happens(e, t, s) and a set of background
facts of the form attempt(e, t, s). The translation of the undesirable scenarios
depends on the event for which the precondition axiom is to be learned. In what
follows, it is assumed that preconditions are to be learned for the last event
of each undesirable scenario. Consequently, each undesirable scenario produces
a sequence of facts stating that certain events do happen followed by one fact
stating that some particular event does not happen immediately afterward. Each
desirable scenario simply states that a certain sequence of events does happen.

Definition 10. Let Spec be a requirements specification, and Des and Und
be sets of desirable and undesirable scenarios respectively. The EC translation
τ(Spec, Des, Und) is the pair (B, E) of EC programs constructed as follows:

– for each undesirable scenario Pu =
∧

1≤i≤n ©iei in Und
• add to E n − 1 facts happens(ei, i − 1, u) with 1 ≤ i < n
• add to E 1 fact not happens(en, n − 1, u)
• add to B n facts attempts(ei, i − 1, u) with 1 ≤ i ≤ n

– for each desirable scenario Pd =
∧

1≤i≤m ©iei in Des
• add to E m facts happens(ei, i − 1, d) with 1 ≤ i ≤ m
• add to B m facts attempts(ei, i − 1, u) with 1 ≤ i ≤ m

– add to B all of the facts and rules in τ(Spec)
– add to B the 4 EC core axioms (1)-(4).
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3.3 Computation of Event Precondition Axioms Using XHAIL

Given an initial specification Spec and sets of desirable and undesirable scenarios
Des and Und, the translation τ defined above can be used to generate a normal
ILP theory B and examples E (such that τ(Spec, Des, Und) = (B, E)). For any
set Pre of event precondition axioms, τ can also be used to generate a set H of
normal clauses of the form (13) below (such that τ(Pre) = H).

impossible(e, T, S) ←
∧

0≤j≤n

(not) holdsAt(fj , T, S) (13)

Moreover, it follows from Theorem 1 that Pre is a correct extension of Spec with
respect to Des and Und iff B ∪H |= E under the stable model view of |=. Hence,
the task of computing correct extensions can be reduced to a non-monotonic ILP
problem in the sense of [28] where the hypothesis space is the set of all clauses
of the form (13) above.

The computation of such preconditions is performed by the non-monotonic
ILP system XHAIL [25], which uses an abductive engine to implement a three-
phase Hybrid Abductive Inductive Learning (HAIL) approach [24]. This ap-
proach is based on constructing and generalising a preliminary ground hypothe-
sis K, called a Kernel Set of B and E, which can be regarded as a non-monotonic
multi-clause generalisation of the well-known Bottom Set concept used in sev-
eral Progol-based ILP systems [20]. As in these monotonic ILP systems, the
construction of the Kernel Set is heavily guided by language and search bias,
and its main purpose is to bound the ILP hypothesis space.

The XHAIL language and search bias mechanisms are based upon the tried-
and-tested notions of mode declarations and compression as used for example
in Progol [20]. Intuitively, the compression heuristic favours the inference of
theories containing the fewest number of literals and is motivated by the scientific
principle of Ocam’s razer (which roughly speaking, means choose the simplest
hypothesis that fits the data). Mode declarations on the other hand provide a
convenient mechanism for specifying which predicates may appear in the heads
and bodies of hypothesis clauses and for controlling the placement and linking
of constants and variables within those clauses [20].

As formalised in [20] mode declarations are of two types head and body dec-
larations. To learn formulae of the form (13) above, one head mode declaration
is needed modeh(∗, impossible(#event, +time, +scenario)) to allow atoms of
the form impossible(e,T,S) to appear in the heads of H . Two body mode dec-
larations are also needed, modeb(∗, holdsAt(#fluent, +time, +scenario)) and
modeb(∗, not holdsAt(#fluent, +time, +scenario)), to allow literals of the form
holdsAt(f, T, S) and not holdsAt(f, T, S) to appear in the bodies of H . The sym-
bols #, +, − are called placemarkers and are replaced by constants, input and
output variables, respectively.

As explained in [25], the hypothesis H is computed in three stages: first the
head atoms Δ of the Kernel Set K are obtained abductively, then the body
literals of K are obtained by deduction, and finally K is inductively generalised
to give H . To exploit a close correspondence between negation and abduction,
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XHAIL performs all three phases by translating them into an Abductive Logic
Programming (ALP) [7] formalism and using an efficient extension [26] of the
Kakas-Mancarella proof procedure [7] to solve each subproblem in turn.

The first phase of the XHAIL proof procedure returns a minimal set of ground
atoms Δ that entail all of the examples E when added to the theory B. This
done by simply querying the examples E against the theory B. The abducible
atoms are defined as the well-typed ground instances of any head declarations.
To avoid any unsoundness caused by the non-monotonicity of the EC axioms,
an incremental cover set approach is not used; instead XHAIL generalises all of
the examples at once.

The second phase of the procedure computes a ground Kernel Set K of B
and E by making each abduced atom α ∈ Δ into the head of a clause and
saturating it with a set of ground body literals entailed by B. This is done
using a non-monotonic generalisation of the Progol saturation procedure [20]. In
order to compute the deductive consequences of B, XHAIL employs the Eshgi-
Kowalski transformation for implementing negation through abduction [3]. In
effect, negative literals not(a) are treated as positive abducibles a∗ subject to
the implicit integrity constraints a → ¬a∗ and a∗ → ¬a.

The third phase, returns a hypothesis H that subsumes K and entails E with
respect to B. Two transforms prepare the ALP system for this task. First, all
input and output terms in K are replaced by variables. Then, each body literal λj

i

at position i in the j-th clause of K is replaced by the atom try(i, j, [X1, . . . , Xk]),
where X1, . . . , Xk are the variables added to that clause, and the two clauses
try(i, j, [X1, . . . , Xk]) ← not(use(i, j)) and try(i, j, [X1, . . . , Xk]) ← use(i, j), λj

i

are added to K. Applying an ALP procedure to the resulting theory B ∪K with
goal E and abducible use/2 gives a set of atoms S =

∧
use(i, j) indicating which

literals λj
i should be kept in H .

Soundness of XHAIL with respect to the stable model semantics follows from
the soundness of the Kakas-Mancarella ALP procedure and the fact that H
is equivalent to the theory K ∪ S computed in the inductive phase of the
XHAIL procedure and which, by definition, entails the examples. Strictly speak-
ing, XHAIL implements the partial stable model semantics, but since the EC
programs generated by τ are categorical in the sense of [28], the two semantics
coincide in this particular application. As illustrated by the case study in the
next section, XHAIL can therefore be used to compute correct extensions of a
partial specification and scenarios via the translation function τ .

4 Case Study: A Mine Pump Control System

This section shows an application of the learning approach proposed in this
paper on a real event-driven system, namely the Mine Pump Control System
fully described in [9]. This is a system that is supposed to monitor and control
water levels in a mine, so to avoid the risk of flood. It is composed of a pump
for pumping mine-water up to the surface. The pump works automatically, con-
trolled by water-level sensors: detection of a high-level water causes the pump
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to run until low-level is indicated. For safety reasons, the pump must not run if
the percentage of methane in the mine exceeds a certain critical limit.

An initial partial requirement specification Spec is given, written in an LTL
language with fluent propositions Pf = {pumpOn, criticalMethane, highWater}
and event propositions Pe ={turnPumpOn, turnPumpOff, signalCriticalMethane,
signalNotCriticalMethane, signalHighWater, signalNotHighWater}. The specifi-
cations includes information about the initial state of the system, persistence
axioms, and change axioms formalised as follows:

(¬criticalMethane ∧ ¬pumpOn ∧ ¬highWater) (14)

�(criticalMethane → (criticalMethane W signalNotCriticalMethane)) (15)

�(¬criticalMethane → (¬criticalMethane W signalCriticalMethane )) (16)

�(pumpOn → (pumpOn W turnPumpOff)) (17)

�(¬pumpOn → (¬pumpOn W turnPumpOn)) (18)

�(highWater → (highWater W signalNotHighWater)) (19)

�(¬highWater → (¬highWater W signalHighWater)) (20)

�(signalCriticalMethane → criticalMethane) (21)

�(signalNotCriticalMethane → ¬criticalMethane) (22)

�(signalHighWater → highWater) (23)

�(signalNotHighWater → ¬highWater ) (24)

�(turnPumpOn → pumpOn) (25)

�(turnPumpOff → ¬pumpOn) (26)

Equation (14) defines the initial state of the system, equations (15)–(20) spec-
ify the persistence axioms, and equations (21)–(26) define the change axioms.
Together with the informal description the case study includes undesirable and
desirable scenarios which have been formalised as follows:

Pu = (©signalCriticalMethane ∧ ©2signalNotCriticalMethane∧
©3 signalCriticalMethane ∧ ©4turnPumpOn) (27)

Pd1 = ( ©signalCriticalMethane ∧ ©2signalHighWater ∧
©3 signalNotCriticalMethane ∧ ©4turnPumpOn ∧

©5 signalCriticalMethane ∧ ©6turnPumpOff)
(28)

Pd2 = (©signalHighWater ∧ ©2turnPumpOn ∧
©3 signalNotHighWater ∧ ©4turnPumpOff ∧

©5 signalHighWater ∧ ©6turnPumpOn)
(29)

Applying the translation τ to the specification and scenarios above results in an
ILP theory B composed of the EC core axioms and the following clauses:
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initiates(signalCriticalMethane,criticalMethane,T,S).
terminates(signalNotCriticalMethane,criticalMethane,T,S).
initiates(signalHighWater,highWater,T,S).
terminates(signalNotHighWater,highWater,T,S).
initiates(turnPumpOn,pumpOn,T,S).
terminates(turnPumpOff,pumpOn,T,S).

attempt(signalCriticalMethane,0,u).
attempt(signalNotCriticalMethane,1,u).
attempt(signalCriticalMethane,2,u).
attempt(turnPumpOn,3,u).

attempt(signalHighWater,0,dp1).
attempt(turnPumpOn,1,dp1).
attempt(signalNotHighWater,2,dp1).
attempt(turnPumpOff,3,dp1).

attempt(signalCriticalMethane,0,dp2).
attempt(signalHighWater,1,dp2).
attempt(signalNotCriticalMethane,2,dp2).
attempt(turnPumpOn,3,dp2).
attempt(signalCriticalMethane,4,dp2).
attempt(turnPumpOff,5,dp2).

In addition, the translation produces the following set of ILP examples E:

happens(signalCriticalMethane,0,u).
happens(signalNotCriticalMethane,1,u).
happens(signalCriticalMethane,2,u).
not happens(turnPumpOn,3,u).

happens(signalHighWater,0,dp1).
happens(turnPumpOn,1,dp1).
happens(signalNotHighWater,2,dp1).
happens(turnPumpOff,3,dp1).

happens(signalCriticalMethane,0,dp2).
happens(signalHighWater,1,dp2).
happens(signalNotCriticalMethane,2,dp2).
happens(turnPumpOn,3,dp2).
happens(signalCriticalMethane,4,dp2).
happens(turnPumpOff,5,dp2).

Applying XHAIL to B and E yields a single abductive explanation

Δ = {impossible(turnPumpOn, 3, u)} (30)
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This results in a single Kernel Set containing one clause

K = {impossible(turnPumpOn,3,u) ← holdsAt(criticalMethane, 3, u),
not holdsAt(pumpOn, 3, u), not holdsAt(highWater, 3, u)}

(31)
which gives two maximally compressive inductive generalisations

H1 = {impossible(turnPumpOn, T, S) ← holdsAt(criticalMethane, T, S)} (32)

H2 = {impossible(turnPumpOn, T, S) ← not holdsAt(highWater,T, S)} (33)

that correspond to the two correct LTL event precondition axioms

Pre1 = �(criticalMethane → ©¬turnPumpOn) (34)

Pre2 = �(¬highWater → ©¬turnPumpOn) (35)

5 Conclusion, Related and Future Work

This paper describes a methodology for using ILP to extend a partial require-
ments specification with event preconditions extracted from user scenarios. The
proposed approach works in two stages whereby the initial specification and sce-
narios are first translated from an LTL model into an EC representation so that
a nonmonotonic ILP system can then be used to learn the missing requirements.
By exploiting the semantic relationship between the LTL and EC, we thereby
provide a sound ILP computational “back-end” to a temporal formalism familiar
to Requirements Engineers.

Our approach is closely related to that of [11], where an inductive method
is proposed for inferring high-level goal assertion from positive and negative
scenarios provided by stakeholders. Scenarios are incrementally generalised by
(a) conjoining new assertions with those obtained from previous scenarios and (b)
merging assertions through pattern matching on common antecedent prefixes.
Compared to [11], our ILP-based approach has the advantage of incorporating
background knowledge into the learning process and producing more compact
and comprehensible hypotheses. Moreover, by making happens abducible, our
approach can be applied to scenarios missing events while [11] cannot.

The method proposed in this paper builds upon earlier work in [19] and [18]
in which the ILP systems Progol5 and Alecto were applied to the learning of
domain specific EC axioms. Like XHAIL, these procedures employ an abductive
reasoning module to enable the learning of predicates distinct from those in the
examples — an ability that is clearly required in this application. However, unlike
XHAIL, they do not have a well-defined semantics for non-definite programs and
their handling of negation is rather limited [25]. In fact, the inability of Progol5
and Alecto to reason abductively through nested negations means that neither
of these systems can solve the case study presented in this paper.

Some related approaches for inferring action theories from examples are
presented in [14], [21] and more recently in [23], which reduce learning in the
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Situation Calculus to a monotonic ILP framework. These approaches work by
pre- and post- processing the inputs and outputs of a conventional Horn Clause
ILP system. This technique is very efficient, but is not as general as our own
approach. An alternative method for nonmonotonic ILP under the stable model
semantics is proposed in [28], but cannot be used in our case study because it
assumes the target predicate is the same as the examples. [28] also includes a
thorough review of previous work on nonmonotonic ILP. A more recent tech-
nique is proposed in [22] that uses a combination of SAT solvers and Horn ILP
to perform induction under the stable model semantics.

Although the approach presented in this paper has been tailored for the learn-
ing of event preconditions, it can also learn other types of requirements such
as triggers and post-conditions of the form �(

∧
0≤i≤k fi → ©e) and �(e →∧

0≤j≤h fj) respectively. In principle, this can be achieved by changing the lan-
guage bias appropriately; but it remains to test the efficiency of the approach
when learning more general forms of requirements and when processing larger
case studies. In this paper we also assumed that scenarios are provided by stake-
holders. However, scenarios could also be automatically generated from desirable
system properties via model-checking [1]. We therefore intend to investigate the
integration of ILP and model checking techniques in order to find new ways of
increasing the flexibility and efficiency of the approach.
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